【无标题】

部署运行你感兴趣的模型镜像

新下载的源码,怎么使用requirements.txt创建虚拟环境

要基于新源码的 requirements.txt 创建并配置 Conda 虚拟环境,核心流程是:创建干净的 Conda 环境 → 激活环境 → 安装 requirements.txt 中的依赖,确保依赖和解释器都隔离在当前环境中,步骤如下(Linux 系统通用):

前提准备:

一、确保已按之前的步骤,能成功创建「完整的 Conda 环境」(有 bin/python 解释器);

二、找到源码目录:假设你的源码放在 ~/code/my_project/(里面包含 requirements.txt);

三、确认 requirements.txt 格式正确(每行是一个依赖,如 numpy==1.26.0、pandas)。

四、分步操作:从创建环境到安装依赖

1:打开终端,进入源码目录(可选但推荐)
进入源码目录后操作,后续安装依赖时更方便(可选,不影响功能):

cd ~/code/my_project/  # 替换为你的源码实际路径

步骤 2:创建 Conda 虚拟环境(指定 Python 版本,关键!)
requirements.txt 中的依赖可能对 Python 版本有要求(比如某些包不支持 Python 3.11+),建议先看源码说明(如 README)指定对应 Python 版本,避免依赖安装失败:

# 格式:conda create -n <环境名> python=<指定版本>
# 示例:创建名为 my_project_env、Python 3.9 的环境(根据源码需求换版本,如 3.8/3.10)
conda create -n my_project_env python=3.9
  • 注意格式:conda create -n <环境名> python=<指定版本>
  • (必须在创建虚拟环境时加上python的指定版本,要不就会造成明明在linux系统上创建了conda虚拟环境,但是虚拟环境的目录下只有两个目录,一个是conda-meta,一个是etc,没有对应的解释器:bin/python,这样就选不到解释器了)

如果已经创建虚拟环境了则直接激活!

conda activate my_project_env

步骤 4:安装 requirements.txt 中的依赖
用环境自带的 pip 安装依赖(激活环境后,pip 已自动关联当前环境的 bin/pip):

# 核心命令:用 pip 安装 requirements.txt 中的所有依赖
pip install -r requirements.txt

安装完成后,可检查核心依赖是否存在:

conda list

最后:在pycharm,SSH解释器那里选择刚配置好的解释器和对应的映射目录!

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值