Tensorflow2.0
文章平均质量分 91
Yohann、
喜欢学习各种计算机相关知识,希望可以未来可以在高校发展,成为一位年轻的教授。
展开
-
基于阿里云服务器的网站部署教程(三) — Python的Flask+html静态文件+CSS+图片部署
基于之前两节阿里云服务器部署的基础,本节将会分享部署在阿里云服务器的Flask如何结合HTML静态文件、CSS和图片设计一个稍微好看一点的网站。 一.网站创建及配置 1.这里我们使用上节教程创建的IP地址的2222端口来进行部署测试。首先,我们需要在test1文件夹下创建templates文件夹,这里的templates放置的文件是html文件。因为Flask库的特殊性,它默认索引的是temp...原创 2020-02-04 22:03:23 · 2287 阅读 · 2 评论 -
Tensorflow2.0学习(十二) — DCGAN(深度卷积生成对抗网络)实战
这一节将会谈到如何使用tensoflow2.0去成功复现出DCGAN的结构并应用在我们的MNIST数据集上。在这里,我们简单的说一下GAN和DCGAN的相关知识。更仔细的原理部分大家可以参照其它博主的博客或者我的后续系列的分享中也会详细提到。 这里附上原官方教程的链接:https://tensorflow.google.cn/tutorials/generative/dcgan。 GAN全称为...原创 2019-12-04 15:12:38 · 3697 阅读 · 15 评论 -
Tensorflow2.0学习(十一) — 猫狗分类迁移学习实战
这一节我们将用Tensorflow2.0完成一个图像领域处理的重要任务,即是“迁移学习”。迁移学习简单来说就是一个预训练的模型(已经在别的数据集上训练过的)重新使用在另一个数据集或任务中。迁移学习不仅大大减小了我们的新数据集的训练时间和难度,而且使得模型的泛化能力更强。那么这一节课我们就通过迁移学习来完成一个猫狗分类的例子。关于迁移学习的底层原理或更多信息,朋友们可以观看其它博主更详细的博客,或者...原创 2019-11-29 17:23:59 · 4621 阅读 · 7 评论 -
Tensorflow2.0学习(十) — 基础张量、微分操作及自定义层
因为再后面一些分享的章节的内容很多是基于经典论文的复现了,里面会牵扯到很多自定义的模型及其变换。而这些内容有些是我们的Keras API 无法完成的,例如Resnet的residual block。因此这一节课我们有必要去学习一些基础、底层的张量、微分运算操作以及明白如何去自定义我们的层。 首先我们要知道我们在前面几个章节所实践的内容格式都是张量形式的。例如,一张图片在Tensorflow模型中...原创 2019-11-26 14:55:37 · 764 阅读 · 0 评论 -
Tensorflow2.0学习(九) — 通过keras自定义图像数据集
上一节讲解了如何用tensorflow自带的函数自定义我们的数据集,那么这一节我将通过调用tensorflow2.0的高级API keras来分享另一种自定义数据集的方式,并且这种方式会更加易懂方便一些。 这一节我们准备处理的数据集为猫狗分类数据集,主要完成的是一个二分类任务。 一.自定义数据集的读取 1.导入相关的库。 from __future__ import absolute_i...原创 2019-11-24 13:40:18 · 2598 阅读 · 5 评论 -
Tensorflow2.0学习(八) — tf.dataset自定义图像数据集
这一节我们参照官方教程提供的代码,研究如何制作自己的数据集并送入深度学习模型中训练。我们可以看到,前几节的内容很多是基于现成的数据集,直接导入使用即可。但在实际应用中,这显然是不可行的。对于Tensorflow2.0,主要有两种自定义制作我们自己数据集的方式:一种是直接由tensorflow自身提供的函数来进行制作,而另一种则是调用tensorflow的高级API Keras的函数来制作,这两种...原创 2019-11-23 14:54:11 · 8863 阅读 · 5 评论