深度学习
文章平均质量分 91
Yohann、
喜欢学习各种计算机相关知识,希望可以未来可以在高校发展,成为一位年轻的教授。
展开
-
Tensorflow2.0学习(十二) — DCGAN(深度卷积生成对抗网络)实战
这一节将会谈到如何使用tensoflow2.0去成功复现出DCGAN的结构并应用在我们的MNIST数据集上。在这里,我们简单的说一下GAN和DCGAN的相关知识。更仔细的原理部分大家可以参照其它博主的博客或者我的后续系列的分享中也会详细提到。这里附上原官方教程的链接:https://tensorflow.google.cn/tutorials/generative/dcgan。GAN全称为...原创 2019-12-04 15:12:38 · 3697 阅读 · 15 评论 -
Tensorflow2.0学习(十一) — 猫狗分类迁移学习实战
这一节我们将用Tensorflow2.0完成一个图像领域处理的重要任务,即是“迁移学习”。迁移学习简单来说就是一个预训练的模型(已经在别的数据集上训练过的)重新使用在另一个数据集或任务中。迁移学习不仅大大减小了我们的新数据集的训练时间和难度,而且使得模型的泛化能力更强。那么这一节课我们就通过迁移学习来完成一个猫狗分类的例子。关于迁移学习的底层原理或更多信息,朋友们可以观看其它博主更详细的博客,或者...原创 2019-11-29 17:23:59 · 4621 阅读 · 7 评论 -
Tensorflow2.0学习(十) — 基础张量、微分操作及自定义层
因为再后面一些分享的章节的内容很多是基于经典论文的复现了,里面会牵扯到很多自定义的模型及其变换。而这些内容有些是我们的Keras API 无法完成的,例如Resnet的residual block。因此这一节课我们有必要去学习一些基础、底层的张量、微分运算操作以及明白如何去自定义我们的层。首先我们要知道我们在前面几个章节所实践的内容格式都是张量形式的。例如,一张图片在Tensorflow模型中...原创 2019-11-26 14:55:37 · 764 阅读 · 0 评论 -
Tensorflow2.0学习(九) — 通过keras自定义图像数据集
上一节讲解了如何用tensorflow自带的函数自定义我们的数据集,那么这一节我将通过调用tensorflow2.0的高级API keras来分享另一种自定义数据集的方式,并且这种方式会更加易懂方便一些。这一节我们准备处理的数据集为猫狗分类数据集,主要完成的是一个二分类任务。一.自定义数据集的读取1.导入相关的库。from __future__ import absolute_i...原创 2019-11-24 13:40:18 · 2598 阅读 · 5 评论 -
Tensorflow2.0学习(八) — tf.dataset自定义图像数据集
这一节我们参照官方教程提供的代码,研究如何制作自己的数据集并送入深度学习模型中训练。我们可以看到,前几节的内容很多是基于现成的数据集,直接导入使用即可。但在实际应用中,这显然是不可行的。对于Tensorflow2.0,主要有两种自定义制作我们自己数据集的方式:一种是直接由tensorflow自身提供的函数来进行制作,而另一种则是调用tensorflow的高级API Keras的函数来制作,这两种...原创 2019-11-23 14:54:11 · 8863 阅读 · 5 评论 -
Tensorflow2.0学习(七) — 多种模型保存和加载的方式
这一节将比较仔细的讲述一个比较重要的知识,就是模型的保存和加载。我们都知道深度学习模型在训练一些大数据集的时候往往需要很长的时间,如果这时候突然断网了或者停电了,那训练不就GG了吗?如果我想再次使用这个模型,难道要重新来过?当然不。在Tensorflow2.0中官方提供了多种模型保存和加载的方式,我们可以训练一定次数进行保存方便下次打开代码时接着进行训练,听起来是不是十分方便呢?接下来让我们来看一...原创 2019-11-22 15:43:00 · 4895 阅读 · 5 评论 -
Tensorflow2.0学习(六) — 线性回归模型(燃油效率预测)
这一节开始主要讲述Tensorflow官方提供的样例代码,我会对其中一些代码部分进行修改并且详细解释大部分代码的意思,方便初学的朋友们学习。这节课我们要完成的是一个线性回归模型的搭建及Auto MPG数据集的预测,顺便附上官方代码的链接:https://tensorflow.google.cn/tutorials/keras/regression。这一节我们使用的数据集为Auto MPG数据集...原创 2019-11-21 19:10:27 · 2136 阅读 · 2 评论 -
Tensorflow2.0学习(五) — Keras基础应用(IMDb电影集情感分析)
今天这一节内容是关于Keras应用分析的最后一节,在熟悉了Keras的基础知识之后,下面几节我们就可以正式接触Tensorflow2.0。根据博主多处查阅,最终还是发现Tensorflow的官方教程好一点,但是官方的代码很多没有注释,不方便初学者理解,因此下几节的内容会主要会针对Tensorflow2.0的官方文档的代码进行讲解和运行,在之后当我们对Tensorflow2.0有了一定了解,我会详细...原创 2019-11-19 17:00:34 · 1800 阅读 · 0 评论 -
Tensorflow2.0学习(四) — Keras基础应用(泰坦尼克生存率预测)
前几节分享的内容都是基于图片数据进行了简单的分类工作,这节内容将应用keras对泰坦尼克旅客的文本数据进行预测,主要是做一个二分类的工作,根据官方提供的数据中的各项特征预测每个旅客生存的概率是多少。一.Titanic3数据集的下载1.导入相关使用到的库。这里的urllib库的作用主要是用于下载数据,os库用于判断文件是否存在,sklearn的preprocessing用于对文本数据进行预处...原创 2019-11-18 19:25:59 · 1267 阅读 · 0 评论 -
Tensorflow2.0学习(三) — Keras基础应用(Cifar-10图像分类)
关于Cifar-10数据集大家应该也比较熟悉,属于比较经典的入门分类的数据集。这里我们不采用Cifar-100,因为类别太多训练时间过长,因此用10类别的Cifar-10代替,这个数据集包括:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车 共10个类别。代码的整体流程和前两节内容差不多,一些相似的代码不做过多解释,有疑问的朋友们可以查看一下之前的内容。一.CIFAR-10数据集下载1.导入...原创 2019-11-18 13:36:01 · 1892 阅读 · 3 评论 -
Tensorflow2.0学习(二)— Keras基础应用(MNIST手写数字图像识别)
上一次第一节的内容是采用基本的神经网络,多层感知机MLP进行手写数据集训练的,这次准备搭建卷积神经网络对MNIST手写数据集进行特征提取,之后在送到MLP中进行训练,关于之前提到的内容这边就不再叙述,如果有对这节部分代码内容有疑问的朋友们可以查看下我博客里第一节的内容。一.MNIST的数据预处理1.这里数据的导入部分和之前的一样,唯一不同的是数据集的reshape部分。因为这次使用的是卷积...原创 2019-11-17 16:57:16 · 1139 阅读 · 4 评论 -
Tensorflow2.0学习(一) — Keras基础应用(MNIST手写数字图像识别)
近期准备开始学习Tensorflow2.0, 顺便复习一下Keras的一些相关原理,因此特此写一些系列教程来分享以及记录我学习过程中的一些知识,总结一些看过的书的内容和网上教程,文章内容均为原创,可能会有些错误的地方,希望大家多多批评和支持,博主会不间断进行更新。新版的Tensorflow2.0与原版的Tensorflow有着较大的更新和变动,Tensorflow2.0将Keras作为默认高级...原创 2019-11-16 23:12:58 · 4107 阅读 · 7 评论