论文题目:DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection
论文链接:https://arxiv.org/pdf/2303.08730v3.pdf
1. 背景与动机
先前基于生成的异常检测模型被次优的数据重构质量所限制,影响了最终的检测性能。具体来说,基于AE生成方法的局限有:
- 异常区域重构的不变性:压缩后的低维表示中仍然保有数据的异常信息,导致重构时仍然会把异常恢复出来;
- 正常区域重构的粗糙性;对正常数据恢复程度不足,导致正常样本被误判为异常(假阳性);
为了改善这一现状,作者提出一种由重构子网络和分割子网络两部分组成的新颖异常检测方法DiffusionAD。
重构子网络利用扩散模型将重构过程