【arXiv 2023】异常检测 | DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection

DiffusionAD是一种基于扩散模型的异常检测方法,它通过重构子网络和分割子网络来改善现有方法的局限性。重构子网络利用噪声扰动异常区域并恢复为正常,而分割子网络则通过比较输入图像和重构图像来确定异常分数。论文还提出一步去噪范式,以提高效率。实验证明DiffusionAD在异常检测中表现优越。
摘要由CSDN通过智能技术生成

论文题目:DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection

论文链接:https://arxiv.org/pdf/2303.08730v3.pdf

1. 背景与动机

先前基于生成的异常检测模型被次优的数据重构质量所限制,影响了最终的检测性能。具体来说,基于AE生成方法的局限有:

  1. 异常区域重构的不变性:压缩后的低维表示中仍然保有数据的异常信息,导致重构时仍然会把异常恢复出来;
  2. 正常区域重构的粗糙性;对正常数据恢复程度不足,导致正常样本被误判为异常(假阳性);

为了改善这一现状,作者提出一种由重构子网络分割子网络两部分组成的新颖异常检测方法DiffusionAD

重构子网络利用扩散模型将重构过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值