反事实解释异常 | arXiv 2024 Reimagining Anomalies: What If Anomalies Were Normal?

论文题目:Reimagining Anomalies: What If Anomalies Were Normal?

论文链接:https://arxiv.org/pdf/2402.14469.pdf

1. 背景与动机

基于深度学习的方法在图像异常检测方面取得了突破,但它们的复杂性给理解为什么一个实例被预测为异常带来了相当大的挑战
这种不可解释性在安全部门和需要建立信任或防止社会偏见的场景中尤其令人关切。

尽管异常热图等特征归因技术已被研究探索,但它们不能解释一个样本为什么被模型判定为异常的的相关语义特征。
反事实解释(Counterfactual Explain, CE)作为一种流行的替代方法,其生成的合成样本可以在对原始样本进行最小改变的情况下改变模型的预测

在这篇文章中,作者使用CE来解释异常检测器,这是第一个将CE用于异常检测领域的研究。
通过生成异常的反事实示例,捕获不同的解纠缠方面(disentangled aspects),提供异常检测器的语义解释,强调触发检测器的异常的高级特征。

2. 方法实现

2.1 图象异常检测的反事实解释

给定异常检测器 ϕ : R D → [ 0 , 1 ] \phi: \mathbb{R}^{D} \to [0,1] ϕ:RD[0,1],输入图像 x ∈ R D x\in \mathbb{R}^{D} xRD被检测器映射为一个异常分数 α ∈ [ 0 , 1 ] \alpha \in [0,1] α[0,1]。一个反事实实例被定义为:一个异常分数远大于0的样本 x ∗ ∈ R D x^*\in \mathbb{R}^{D} xRD被转换为一个异常分数约为0的样本 x ˉ ∗ \bar{x}^* xˉ ϕ ( x ˉ ∗ ) ≈ 0 \phi(\bar{x}^*)\approx 0 ϕ(xˉ)0并且 ∥ x ˉ ∗ − x ∗ ∥ 1 ≤ ϵ \left \| \bar{x}^* - x^*\right \| _1 \le \epsilon xˉx1ϵ ϵ ≥ 0 \epsilon \ge 0 ϵ0
简单来说就是CE是通过最小程度修改一个异常得到的正常

为了生成这样的CEs,需要训练一个生成器 G : R D → R D G: \mathbb{R}^{D}\to \mathbb{R}^{D} G:RDRD。然而,正常可能在很多方面与异常区分,因此需要多个CEs来充分的解释异常。因此生成器被期望能够考虑多个概念, G : R D × { 1 , ⋯   , K } → R D G: \mathbb{R}^{D}\times \{1,\cdots,K\}\to \mathbb{R}^{D} G:RD×{1,,K}RD
G ( x ∗ , k ) = x ˉ k ∗ G(x^*,k)=\bar{x}_k^* G(x,k)=xˉk ∥ x ˉ k ∗ − x k ′ ∗ ∥ 1 ≤ ϵ ′ \left \| \bar{x}_k^* - x_{k^\prime}^*\right \| _1 \le \epsilon^{\prime} xˉkxk1ϵ

2.2 解纠缠反事实解释

在AD领域外,DISSECT(Disentangled Simultaneous Explanations via Concept Traversal)生成的一系列CE对分类器输出的影响越来越大。本文中,作者借鉴了这一思想。

具体地,生成器被修改为 G : R D × [ 0 , 1 ] × { 1 , ⋯   , K } → R D G: \mathbb{R}^{D}\times [0,1]\times \{1,\cdots,K\}\to \mathbb{R}^{D} G:RD×[0,1]×{1,,K}RD,额外考虑一个目标异常分数,期望 G G G输出样本的异常分数大约在 α \alpha α附近。遵循DISSECT,生成器为一个概念解纠缠的生成对抗网络(concept-disentangled GAN)。

  • 判别器 D : R D → [ 0 , 1 ] D: \mathbb{R}^{D}\to [0,1] D:RD[0,1],被训练用于区分样本是生成的 x ˉ α , k = G ( x , α , k ) \bar{x}_{\alpha, k}=G(x,\alpha,k) xˉα,k=G(x,α,k),还是来自真实数据集的。
  • 分类器 R : R D × R D → [ 0 , 1 ] K R: \mathbb{R}^{D}\times \mathbb{R}^{D}\to [0,1]^{K} R:RD×RD[0,1]K,分类样本 x ˉ α , k \bar{x}_{\alpha, k} xˉα,k的概念 k k k,鼓励生成的样本在语义级别上是概念解纠缠的。

损失鼓励生成器导致原始图像最小的改变,并生成目标分数 α \alpha α。最终的优化目标可以概括为:
min ⁡ G , R max ⁡ D λ gan  ( L D ( D ) + L G ( G ) ) + λ ϕ L ϕ ( G ) + ∣ λ rec  L rec  ( G ) + λ rec  L cyc  ( G ) + λ r L con  ( G , R ) , (1) \begin{gathered} \min _{G, R} \max _D \lambda_{\text {gan }}\left(L_D(D)+L_G(G)\right)+\lambda_\phi L_\phi(G)+\mid \\ \lambda_{\text {rec }} L_{\text {rec }}(G)+\lambda_{\text {rec }} L_{\text {cyc }}(G)+\lambda_r L_{\text {con }}(G, R), \end{gathered} \tag{1} G,RminDmaxλgan (LD(D)+LG(G))+λϕLϕ(G)+λrec Lrec (G)+λrec Lcyc (G)+λrLcon (G,R),(1)
其中, L ϕ ( G ) L_\phi(G) Lϕ(G)表示为:
L ϕ ( G ) = α log ⁡ ( ϕ ( x ˉ α , k ) ) + ( 1 − α ) log ⁡ ( 1 − ϕ ( x ˉ α , k ) ) (2) L_\phi(G)=\alpha \log \left(\phi\left(\bar{x}_{\alpha, k}\right)\right)+(1-\alpha) \log \left(1-\phi\left(\bar{x}_{\alpha, k}\right)\right) \tag{2} Lϕ(G)=αlog(ϕ(xˉα,k))+(1α)log(1ϕ(xˉα,k))(2)
L D ( D ) L_D(D) LD(D) L G ( G ) L_G(G) LG(G)可以分别是任意的判别式和生成式GAN损失。文中,作者使用谱正则化(spectral normalization)和合页损失(hinge loss)。
L G ( G ) = − D ( x ‾ α , k ) (3) L_G(G)=-D\left(\overline{\boldsymbol{x}}_{\alpha, k}\right) \tag{3} LG(G)=D(xα,k)(3)
L D ( D ) = − min ⁡ ( 0 , − 1 + D ( x ) ) − min ⁡ ( 0 , − 1 − D ( x ‾ α , k ) ) (4) L_D(D)=-\min (0,-1+D(\boldsymbol{x}))-\min \left(0,-1-D\left(\overline{\boldsymbol{x}}_{\alpha, k}\right)\right) \tag{4} LD(D)=min(0,1+D(x))min(0,1D(xα,k))(4)

重构损失为
L rec  ( G ) = ∥ x − G ( x , ϕ ( x ) , k ) ∥ 1 (5) L_{\text {rec }}(G)=\|\boldsymbol{x}-G(\boldsymbol{x}, \phi(\boldsymbol{x}), k)\|_1 \tag{5} Lrec (G)=xG(x,ϕ(x),k)1(5)
在条件为 x \boldsymbol{x} x ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x)时,生成器 G G G为每一个概念 k k k都重构 x x x,这使得生成器在样本已经具有目标异常分数的时候维持不变,从而鼓励对样本最微小的变化。

相似的,循环一致性损失(cycle consistency loss)为
L c y c ( G ) = ∥ x − x ~ α , k ∥ (6) L_{cyc}(G)=\left \| \boldsymbol{x}-\tilde{\boldsymbol{x}}_{\alpha,k} \right \| \tag{6} Lcyc(G)=xx~α,k(6)

这里 x ~ α , k = G ( x ˉ , ϕ ( x ) , k ) \tilde{\boldsymbol{x}}_{\alpha,k}=G(\bar{\boldsymbol{x}}, \phi(\boldsymbol{x}), k) x~α,k=G(xˉ,ϕ(x),k)鼓励生成器 G G G重建样本,其目标是真实的异常分数 ϕ ( x ) \phi(\boldsymbol{x}) ϕ(x),条件是基于 x x x的任意生成样本 x ˉ k , α \bar{\boldsymbol{x}}_{k,\alpha} xˉk,α。它鼓励最小的更改,因为生成器需要能够恢复 x x x的任何更改。

L c o n ( G , R ) L_{c o n}(G, R) Lcon(G,R)使生成器 G G G产生解纠缠的概念:
L c o n ( G , R ) = C ( k , R ( x , x ‾ α , k ) ) + C ( k , R ( x ‾ k , α , x ~ α , k ) ) (7) L_{c o n}(G, R)=\mathbb{C}\left(k, R\left(\boldsymbol{x}, \overline{\boldsymbol{x}}_{\alpha, k}\right)\right)+\mathbb{C}\left(k, R\left(\overline{\boldsymbol{x}}_{k, \alpha}, \tilde{\boldsymbol{x}}_{\alpha, k}\right)\right) \tag{7} Lcon(G,R)=C(k,R(x,xα,k))+C(k,R(xk,α,x~α,k))(7)
C \mathbb{C} C表示交叉熵损失。

总而言之,损失函数鼓励生成的样本对于不同的概念来说在语义上是可区分的,同时根据检测器得到的异常分数对原始的样本进行最小程度的改变。
对于一个异常 x ∗ x^* x,我们可以得到 K K K个解纠缠的反事实例子 { G ( x ∗ , 0 , 1 ) , ⋯   , G ( x ∗ , 0 , K ) } \{G(x^*,0,1),\cdots,G(x^*,0,K)\} {G(x,0,1),,G(x,0,K)}。此外,生成器也能够生成伪异常,这使得生成器学习到如何将异常转换伪正常,这一点被包含在 L ϕ L_{\phi} Lϕ中。
CE框架是通用的,可以应用于任何产生实值异常分数的异常检测器。

3. 实验设置

3.1 数据集

  • MNIST, Colored-MNIST, CIFAR-10, GTSDB

3.2 实验设置

3.2.1 场景定义
  • 对于MNIST和CIFAR-10,共构建30个场景。其中,10个单类分类场景,20个多类分类场景。
  • 对于Colored-MNIST,通过颜色和数字的组合定义7个正常类场景。
  • 对于GTSDB,构建10个不同的正常类集。‘

注:场景的具体定义请参考原文附录。

3.2.2 网络结构

三个深度异常检测方法:BCE,HSC,DSVDD,被用于生成和比较反事实实例CEs。概念分类器使用一个小型的ResNet,所有的判别器和生成器是一个大一些的ResNet。

3.3 实验结果

3.3.1 定性分析

主要在各个数据集上对三种AD方法得到的异常和CEs进行分析说明。(图片较多,就不在文档中进行展示了,如感兴趣,请直接阅读论文原文)

3.3.2 定量分析
  1. 反事实实例必须被检测器判断是正常的。通过比较正常测试样本和生成CEs的分数的AuROC,理想状态下指标应该接近50%,表明CE和正常样本难以被区分。
  1. 如果CEs与正常图像相似,那么它们可以作为正常的训练样本。因此作者使用CEs代替正常训练集重新训练AD。
  1. 反事实实例是真实的,作者通过计算CEs和正常测试样本之间的FID值来评估CEs的真实性。如果CEs和异常一样真实,则FID是100%。但作者发现标准化FID为50%至100%是表达性CEs的合理目标。因为要是CEs和正常太过相似,它们将无法从异常中保持非异常特征,从而变成无效的反事实实例。
  1. 反事实实例的解纠缠度评估。

3.4 反事实实例揭示了AD的分类偏差

4. 总结

本文介绍了一种从语义层面对图像异常检测器进行解释的新方法。这是通过修改异常,直到它们被检测器认为是正常的,创建称为反事实的实例来实现的。反事实在许多科学学科中发挥着至关重要的作用,从流行病学的因果推理到经济学的决策和气候科学的预测模型。
作者发现反事实可以为图像异常检测器提供更深入、更细致的理解,远远超出传统的特征归因水平。

参考文献

[1] Liznerski P, Varshneya S, Calikus E, et al. Reimagining Anomalies: What If Anomalies Were Normal?[J]. arXiv preprint arXiv:2402.14469, 2024.

更多论文分享欢迎关注微信公众号 Efficient AI

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值