
论文题目:Reimagining Anomalies: What If Anomalies Were Normal?
论文链接:https://arxiv.org/pdf/2402.14469.pdf
1. 背景与动机
基于深度学习的方法在图像异常检测方面取得了突破,但它们的复杂性给理解为什么一个实例被预测为异常带来了相当大的挑战。
这种不可解释性在安全部门和需要建立信任或防止社会偏见的场景中尤其令人关切。
尽管异常热图等特征归因技术已被研究探索,但它们不能解释一个样本为什么被模型判定为异常的的相关语义特征。
反事实解释(Counterfactual Explain, CE)作为一种流行的替代方法,其生成的合成样本可以在对原始样本进行最小改变的情况下改变模型的预测。
在这篇文章中,作者使用CE来解释异常检测器,这是第一个将CE用于异常检测领域的研究。
通过生成异常的反事