
论文题目:Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection
论文链接:https://ieeexplore.ieee.org/abstract/document/10508984
1. 背景与动机
现有的时序异常检测工作主要通过设计先进的神经网络和新颖的重构/预测学习目标对数据的正态性进行深度和全面的学习。
然而,在无监督模式下,单类分类方法检测异常面临两个关键难点:1.训练集中存在异常污染;2.缺乏异常的相关知识;
导致模型学习到的正常边界是有偏的、不准确的。
为了解决这一问题,本文提出一种基于校准的单类分类方法,通过基于不确定性建模的校准和基于原生异常的校准,实现数据的耐污染和异常感知学习。