【TKDE 2024】异常检测 | Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection

论文COUTA提出了一种新的无监督时序异常检测方法,针对单类分类异常检测中的异常污染和缺乏异常知识问题。通过不确定性建模的校准(UMC)和基于原生异常的校准(NAC),降低异常污染影响,引入异常知识。UMC使用高斯分布惩罚不确定性,NAC通过数据扰动模拟异常。实验表明COUTA在时序异常检测中表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection

论文链接:https://ieeexplore.ieee.org/abstract/document/10508984

1. 背景与动机

现有的时序异常检测工作主要通过设计先进的神经网络和新颖的重构/预测学习目标对数据的正态性进行深度和全面的学习。

然而,在无监督模式下,单类分类方法检测异常面临两个关键难点:1.训练集中存在异常污染;2.缺乏异常的相关知识;
导致模型学习到的正常边界是有偏的、不准确的。

为了解决这一问题,本文提出一种基于校准的单类分类方法,通过基于不确定性建模的校准基于原生异常的校准,实现数据的耐污染和异常感知学习。

2. 方法实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值