自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 【总结整理】 神经网络与深度学习 邱锡鹏 课后习题答案 扩展阅读链接

本文主要针对神经网络神经网络邱锡鹏 2~8章的课后习题进行理解的过程中,搜索到的讲的会比较透彻的链接整理。适合有一定基础但是想了解更细的人阅读。

2024-12-26 17:57:31 1099

原创 【强化学习】表格型方法 李宏毅 蘑菇书 第三章

本文主要针对**查找表的强化学习方法**(==表格型方法==),讨论**表格型方法是什么**,他的**常见类型和使用的场景**,**常见的算法**,这三个类型给具有一定基础知识的读者介绍表格方法。主要参考李宏毅的蘑菇书

2024-12-12 21:11:41 728

原创 【强化学习】 马尔科夫性 李宏毅 蘑菇书 第二章

本文主要针对强化学习中所需求的马尔科夫决策过程进行详解,讨论**马尔科夫性到底是什么**,**为什么强化学习需要环境有马尔科夫性**,**马尔科夫奖励过程**和**马尔可夫决策过程**是怎么做的,一共四个方面给具有一定基础知识的读者介绍强化学习。

2024-12-12 01:02:02 1170

原创 【强化学习】 强化学习是什么?为什么?怎么做? 李宏毅 蘑菇书 第一章

主要示意图就是上图,强化学习主要讨论就是智能体(agent)怎么在复杂、不确定的环境(environment)中最大化它能获得的奖励。两个部分就如上述所示,智能体、环境。然后agent交互环境生成一个动作,也被叫做决策,该动作执行,环境就输出下一个状态和奖励。强化学习就是要搞一个最好的一连串的动作。

2024-12-10 15:21:40 849

原创 【论文中最常见缩写】原文以及意思 wrt ie SOTA等

但是里面关于c.f.的意思是错的,对他做了一定的更正。

2024-11-22 11:22:39 429 2

原创 【论文阅读】 推荐系统去噪文章 The World is Binary: Contrastive Learning for Denoising Next Basket Recommendation

下一次购物篮推荐旨在通过考虑用户之前购买的一系列购物篮来推断用户在下次访问时将购买的一组商品。这项任务越来越受到学术界和工业界的关注。现有的解决方案主要集中于对其历史交互的顺序建模。然而,由于用户行为的多样性和随机性,并非所有这些篮子都有助于识别用户的下一步行动。有必要对篮子进行去噪并提取可信的相关项目以提高推荐性能。不幸的是,这个维度在当前的文献中通常被忽视。为此,在本文中,我们提出了一种对比学习模型(称为 CLEA)来自动提取与目标项目相关的项目以进行下一个购物篮推荐。

2024-11-21 23:10:02 1144 1

原创 环保业务 梳理 国家层面

环保业务主要包括:自然生态保护、水生态环境保护、海洋生态环境保护、大气环境保护、应对气候变化、土壤生态环境保护、固体废物与化学品管理和核与辐射安全监管八个方面。

2024-11-13 17:44:08 721

原创 【一文了解最新的社交推荐】 社交推荐综述 基本定义 常用算法 问题难点 【已完结】

本文带你了解社交推荐是什么。发展过程如何。理论来源是什么。最新的方法都有哪些。

2024-11-06 16:30:25 977

原创 【动态绘图】python 动态柱形图 动态折线图 bar_chart_race sjvisualizer

本文主要介绍如何使用Python的和模块绘制动态折线图和动态柱形图

2024-10-24 20:55:53 1339

原创 【动态绘图】 sjvisualizer 参数详解 (一张画多个图 条形动态图自定义 饼状动态图自定义 折现动态图自定义 区域动态图自定义)中 额外绘图

sjvisualizer 是一个可以画各种动态图的包。该文阐述了额外属性的参数详解,包括在一张图上画多张图的函数sub-plot、条形相关动态图个性化、饼状相关动态图个性化、折线相关动态图个性化、区域相关动态图个性化的额外参数。

2024-10-18 23:52:48 1438

原创 GCE-GNN 基于会话推荐的全局上下文增强图神经网络 推荐系统经典论文阅读

本文针对编码方式首先使用了全局图与会话图聚合进行embedding与学习,生成全局图的方式和全局图使用四种无向边代替一条或多条有向边,并学习其对应特征。在embedding部分使用了反向的嵌入以代表时间的先后顺序与兴趣的关系,并使用注意力机制过滤掉一部分噪声构成了GCEGNN,总的来说内容比较详实,从多个方面并且结合一定的先验知识对模型进行一定改进,embedding方式也比较有意思。

2024-10-17 20:05:36 920 1

原创 【动态绘图】 sjvisualizer 参数详解 (动态折线图 动态饼形图 动态区域图 动态柱形图) 上半部分 基础绘图

sjvisualizer 是一个可以画各种动态图的包。包括动态柱形图、动态饼形图、动态折线图、动态区域图。比bar_chart_race包适用性更广泛,可扩展性也相对更强。

2024-10-16 23:59:53 721 1

原创 KDD24 推荐系统 论文整理 自用

ACM KDD 2024 相关论文kdd24论文中检索“recommen”关键词得到的推荐系统相关论文。

2024-10-15 08:00:00 1509

原创 LESSR 处理基于会话的推荐的图神经网络信息丢失 推荐系统经典文章阅读

2020年左右,图神经网络 (GNN) 因其在各种应用中令人信服的性能而越来越受欢迎。许多先前的研究也尝试将 GNN 应用于基于会话的推荐并获得了有希望的结果。然而,我们发现这些基于 GNN 的会话推荐方法存在两个信息丢失问题,即有损会话编码问题和无效的长距离依赖捕获问题。第一个问题是有损会话编码问题。由于从会话到图的有损编码以及消息传递过程中的排列不变聚合,一些关于项目转换的顺序信息被忽略。第二个问题是无效的长距离依赖捕获问题。由于层数有限,无法捕获会话内的一些长距离依赖关系。

2024-10-14 14:58:23 935

原创 bar_chart_race 动态柱形图 参数使用

bar_chart_race包主要参数使用

2024-10-13 13:54:23 1263

原创 SRGNN 基于图神经网络的会话推荐 推荐系统经典文章阅读

基于会话的推荐问题旨在基于匿名会话预测用户行为。先前的方法将会话建模为一个序列,并估计除项目表示之外的用户表示以进行推荐。虽然取得了有希望的结果,但它们不足以在会话中获得准确的用户向量,并且忽略了项目的复杂转换。为了获得准确的项目嵌入并考虑项目的复杂转换,我们提出了一种新方法,即基于图神经网络的会话推荐,简称 SR-GNN。在所提出的方法中,会话序列被建模为图结构数据。基于会话图,GNN 可以捕获项目的复杂转换,而这些转换很难通过以前的传统顺序方法揭示。

2024-10-08 12:15:00 1325

原创 鲁棒性、稳健性和稳定性的区别

鲁棒性与稳健性为英文robustness的音译和意译,指的是系统针对特性或扰动的不敏感性,两者大多数情况为同义词。稳定性英文对应stability,更多指的是随着时间或者其他量不变化的能力。此外,在计算机领域一般使用鲁棒性进行翻译robustness,笔者认为主要原因在于稳健性易与稳定性进行混淆,鲁棒性在计算机领域相较稳健性也确实更多一些。

2024-10-05 22:37:22 1532

原创 KDD24论文简读 基于独立级联图增强的自监督去噪稳健社会推荐 翻译加理解

社交推荐 (SR) 通常利用社交网络中的邻里影响力来增强用户偏好建模。 然而,用户复杂的社交行为可能会为用户建模引入嘈杂的社交联系,损害模型的稳健性。现有的缓解社交噪音的解决方案要么过滤掉嘈杂的联系,要么生成新的潜在社交联系。由于缺乏标签,前一种方法可能会为用户偏好建模保留不确定的联系,而后一种方法可能会引入额外的社交噪音。通过数据分析,发现 (1) 社交噪音可能来自偏好相似度较低的连接用户;(2) 意见领袖 (OL) 在影响力传播中发挥着关键作用,超越了高相似度的邻居,无论他们与信任同伴的偏好相似度如何。

2024-09-26 22:58:17 1038

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除