- 博客(11)
- 收藏
- 关注
原创 【一文了解最新的社交推荐】 社交推荐综述 基本定义 常用算法 问题难点 【持续更新】
本文带你了解社交推荐是什么?发展过程如何?理论来源是什么?最新的方法都有哪些?
2024-11-06 16:30:25 797
原创 【动态绘图】python 动态柱形图 动态折线图 bar_chart_race sjvisualizer
本文主要介绍如何使用Python的和模块绘制动态折线图和动态柱形图
2024-10-24 20:55:53 1178
原创 【动态绘图】 sjvisualizer 参数详解 (一张画多个图 条形动态图自定义 饼状动态图自定义 折现动态图自定义 区域动态图自定义)中 额外绘图
sjvisualizer 是一个可以画各种动态图的包。该文阐述了额外属性的参数详解,包括在一张图上画多张图的函数sub-plot、条形相关动态图个性化、饼状相关动态图个性化、折线相关动态图个性化、区域相关动态图个性化的额外参数。
2024-10-18 23:52:48 1370
原创 GCE-GNN 基于会话推荐的全局上下文增强图神经网络 推荐系统经典论文阅读
本文针对编码方式首先使用了全局图与会话图聚合进行embedding与学习,生成全局图的方式和全局图使用四种无向边代替一条或多条有向边,并学习其对应特征。在embedding部分使用了反向的嵌入以代表时间的先后顺序与兴趣的关系,并使用注意力机制过滤掉一部分噪声构成了GCEGNN,总的来说内容比较详实,从多个方面并且结合一定的先验知识对模型进行一定改进,embedding方式也比较有意思。
2024-10-17 20:05:36 784
原创 【动态绘图】 sjvisualizer 参数详解 (动态折线图 动态饼形图 动态区域图 动态柱形图) 上半部分 基础绘图
sjvisualizer 是一个可以画各种动态图的包。包括动态柱形图、动态饼形图、动态折线图、动态区域图。比bar_chart_race包适用性更广泛,可扩展性也相对更强。
2024-10-16 23:59:53 657
原创 LESSR 处理基于会话的推荐的图神经网络信息丢失 推荐系统经典文章阅读
2020年左右,图神经网络 (GNN) 因其在各种应用中令人信服的性能而越来越受欢迎。许多先前的研究也尝试将 GNN 应用于基于会话的推荐并获得了有希望的结果。然而,我们发现这些基于 GNN 的会话推荐方法存在两个信息丢失问题,即有损会话编码问题和无效的长距离依赖捕获问题。第一个问题是有损会话编码问题。由于从会话到图的有损编码以及消息传递过程中的排列不变聚合,一些关于项目转换的顺序信息被忽略。第二个问题是无效的长距离依赖捕获问题。由于层数有限,无法捕获会话内的一些长距离依赖关系。
2024-10-14 14:58:23 890
原创 SRGNN 基于图神经网络的会话推荐 推荐系统经典文章阅读
基于会话的推荐问题旨在基于匿名会话预测用户行为。先前的方法将会话建模为一个序列,并估计除项目表示之外的用户表示以进行推荐。虽然取得了有希望的结果,但它们不足以在会话中获得准确的用户向量,并且忽略了项目的复杂转换。为了获得准确的项目嵌入并考虑项目的复杂转换,我们提出了一种新方法,即基于图神经网络的会话推荐,简称 SR-GNN。在所提出的方法中,会话序列被建模为图结构数据。基于会话图,GNN 可以捕获项目的复杂转换,而这些转换很难通过以前的传统顺序方法揭示。
2024-10-08 12:15:00 1187
原创 鲁棒性、稳健性和稳定性的区别
鲁棒性与稳健性为英文robustness的音译和意译,指的是系统针对特性或扰动的不敏感性,两者大多数情况为同义词。稳定性英文对应stability,更多指的是随着时间或者其他量不变化的能力。此外,在计算机领域一般使用鲁棒性进行翻译robustness,笔者认为主要原因在于稳健性易与稳定性进行混淆,鲁棒性在计算机领域相较稳健性也确实更多一些。
2024-10-05 22:37:22 1062
原创 KDD24论文简读 基于独立级联图增强的自监督去噪稳健社会推荐 翻译加理解
社交推荐 (SR) 通常利用社交网络中的邻里影响力来增强用户偏好建模。 然而,用户复杂的社交行为可能会为用户建模引入嘈杂的社交联系,损害模型的稳健性。现有的缓解社交噪音的解决方案要么过滤掉嘈杂的联系,要么生成新的潜在社交联系。由于缺乏标签,前一种方法可能会为用户偏好建模保留不确定的联系,而后一种方法可能会引入额外的社交噪音。通过数据分析,发现 (1) 社交噪音可能来自偏好相似度较低的连接用户;(2) 意见领袖 (OL) 在影响力传播中发挥着关键作用,超越了高相似度的邻居,无论他们与信任同伴的偏好相似度如何。
2024-09-26 22:58:17 897
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人