这是一篇来自新加坡科技与设计大学 Sun Zhu老师团队的文章。来自24年8月的KDD24。
全名为Self-Supervised Denoising through Independent Cascade Graph
Augmentation for Robust Social Recommendation。
本篇论文主题为社交推荐条件下去噪。
在阅读这篇文献之前,引入几个基本的知识点:
推荐系统:狭义可理解为给人推荐物品(item)。
社交推荐:结合人的社交关系进行更准确的推荐人或物。
独立级联扩散模型:每个节点只有激活和不激活两个状态,每个节点都有且仅有一次机会激活其邻居节点,一个节点被其他的节点激活的概率互相独立。
自监督学习:使用数据本身的结构生成标签进行预测,迫使模型学到有用的特征。
相似度:一般在操作系统中指余弦相似度,越大越相似。可参考推荐系统常用相似度计算方法
图对比学习:将自监督学习与图对比学习结合到一起。
图表示学习:利用表示学习技术,将图映射到向量空间,以保留图的结构特征和语义特征。
BPR损失:让正样本和负样本的得分之差尽可能达到最大的损失。
论文主要目标是基于独立级联扩散模型增强自监督去噪的稳定性比较高的社会推荐过程。
关键词为:社交推荐系统;图像去噪;自监督学习;独立级联。
概述
社交推荐 (SR) 通常利用社交网络中的邻里影响力来增强用户偏好建模。 然而,用户复杂的社交行为可能会为用户建模引入嘈杂的社交联系,损害模型的稳健性。现有的缓解社交噪音的解决方案要么过滤掉嘈杂的联系,要么生成新的潜在社交联系。由于缺乏标签,前一种方法可能会为用户偏好建模保留不确定的联系,而后一种方法可能会引入额外的社交噪音。通过数据分析,发现 (1) 社交噪音可能来自偏好相似度较低的连接用户;(2) 意见领袖 (OL) 在影响力传播中发挥着关键作用,超越了高相似度的邻居,无论他们与信任同伴的偏好相似度如何。在这些观察的指导下,提出了一种通过独立级联图增强的新型自监督去噪方法,以实现更稳健的 SR。 具体来说,采用独立级联扩散模型来生