KDD24论文简读 基于独立级联图增强的自监督去噪稳健社会推荐 翻译加理解

这是一篇来自新加坡科技与设计大学 Sun Zhu老师团队的文章。来自24年8月的KDD24。
全名为Self-Supervised Denoising through Independent Cascade Graph
Augmentation for Robust Social Recommendation。

本篇论文主题为社交推荐条件下去噪

在阅读这篇文献之前,引入几个基本的知识点:
推荐系统:狭义可理解为给人推荐物品(item)。
社交推荐:结合人的社交关系进行更准确的推荐人或物。
独立级联扩散模型:每个节点只有激活和不激活两个状态,每个节点都有且仅有一次机会激活其邻居节点,一个节点被其他的节点激活的概率互相独立
自监督学习:使用数据本身的结构生成标签进行预测,迫使模型学到有用的特征。
相似度:一般在操作系统中指余弦相似度,越大越相似。可参考推荐系统常用相似度计算方法
图对比学习:将自监督学习与图对比学习结合到一起。
​图表示学习:利用表示学习技术,将图映射到向量空间,以保留图的结构特征和语义特征。
BPR损失:让正样本和负样本的得分之差尽可能达到最大的损失。

论文主要目标是基于独立级联扩散模型增强自监督去噪的稳定性比较高的社会推荐过程。
关键词为:社交推荐系统;图像去噪;自监督学习;独立级联。

概述

社交推荐 (SR) 通常利用社交网络中的邻里影响力来增强用户偏好建模。 然而,用户复杂的社交行为可能会为用户建模引入嘈杂的社交联系,损害模型的稳健性。现有的缓解社交噪音的解决方案要么过滤掉嘈杂的联系,要么生成新的潜在社交联系。由于缺乏标签,前一种方法可能会为用户偏好建模保留不确定的联系,而后一种方法可能会引入额外的社交噪音。通过数据分析,发现 (1) 社交噪音可能来自偏好相似度较低的连接用户;(2) 意见领袖 (OL) 在影响力传播中发挥着关键作用,超越了高相似度的邻居,无论他们与信任同伴的偏好相似度如何。在这些观察的指导下,提出了一种通过独立级联图增强的新型自监督去噪方法,以实现更稳健的 SR。 具体来说,采用独立级联扩散模型来生成增强图视图,该视图遍历社交图并按顺序激活边缘以模拟级联影响扩散。为了将增强引向去噪社交图, (1) 引入分层对比损失,优先激活 OL,然后是高相似度邻居,同时削弱低相似度邻居;(2) 集成基于信息瓶颈的对比损失,旨在最小化原始和增强之间的相互信息图仍保留了足够的信息以改进 SR。在两个公共数据集上进行的实验表明,本文模型优于最先进的模型,同时对不同程度的社会噪音表现出更高的鲁棒性。

第一章 引言

社交推荐是根据人和人之间的链接来进行推荐,但是建立关系成本低且社会行为很复杂,社交网络中会存在噪声,即人和人之间的相似度较低,需要谨慎的推断用户偏好。本文采用使用自监督学习(图对比学习)的方法考虑社会噪声,即考虑间接邻居,和往往更具有影响力的意见领袖(即大V,文中称为Opinion Leader)。

主要贡献:

  1. 进行了数据分析,实证地揭示了(1)社会噪声的存在;(2)社会对邻居之间用户偏好建模的影响层次:OLs >高相似邻居>低相似邻居。

  2. 引入了一个独立的基于级联的图增强,模拟了社交网络中的级联影响传播,无缝地放大了OLs和高相似性邻居的影响,同时通过分层对比任务削弱了低相似性邻居的影响。这种增强进一步与基于信息瓶颈的对比任务相结合,对去噪的社交图进行有效的自我监督,从而促进鲁棒SR。

  3. 在两个真实世界的数据集上进行了实验,以验证提出的方法在预测精度和对社会噪声的鲁棒性方面的优越性。

第二章 数据分析

主要针对两个社交推荐数据集(Epinion和Ciao)进行分析,以研究

(1)社交网络中是否包含对用户建模产生不利影响的噪声连接?如果是,潜在的来源是什么
(2)是否有任何社交连接对用户建模产生更显著的积极影响?

观察到社交网络中的噪声可能来源于相似度较低的连接。而且OL的意见更可能影响人,且我们跟倾向于听取具有一样兴趣的建议。

在DiffNet++与TrustSVD中验证了这件事,很可能与猜测相关,得出结论:在所有邻居中,意见领袖 (OL) 对用户偏好建模的积极影响比普通邻居更强,无论其与目标用户的偏好相似性如何。 因此,确定了邻居之间的影响力层次:OL > 高相似度邻居 > 低相似度邻居。

传播信息过程中每个人影响力不同,文中采用PageRank(网页排名)在1%的人作为OL。

第三章 提出方法

提出了 SSD-ICGA,这是一种新颖的社交推荐器,它通过独立级联图增强实现自监督去噪。整体结构如图 3 所示。从技术上讲,首先提出通过独立级联 (IC) 扩散模型进行图增强,以考虑社会影响的级联扩散。然后,引入分层对比损失以放大 OL 和高相似度邻居的作用,同时弱化 IC 扩散过程中低相似度邻居的作用。最后,将图增强进一步与基于信息瓶颈的对比任务相结合,通过在保留相关信息和放弃非必要细节以实现稳健增强之间取得平衡来寻求有效的知识提取。

问题定义。设 U = {𝑢_1, 𝑢_2, ..., 𝑢_𝑀 } 表示用户集,I = {𝑖_1,𝑖2, ...,𝑖𝑁 } 表示项目集,其中 𝑀 表示用户数,𝑁 表示项目数。我们使用 K 表示 OL 集。涉及两个图:用户-项目图 G𝑅 和有向社交图 G𝑆 。相应的二元邻接矩阵表示为 R = {𝑟𝑢𝑖 }𝑀×𝑁 和 S = {𝑠𝑢𝑣 }𝑀×𝑀 ,其中如果用户 𝑢 与商品 𝑖 交互,则 𝑟𝑢𝑖 = 1;如果用户 𝑢 与用户 𝑣 有联系,则 𝑠𝑢𝑣 = 1。每个用户和商品分别与一个 𝑑 维初始 ID 嵌入 e𝑢 和 e𝑖 相关联。给定 G𝑅 和 G𝑆 ,目标是获得去噪社交图 G˜ 𝑆,以便对 R 中未观察到的用户-商品交互进行稳健预测。

文中对于G_R的偏好建模遵循框架LightGCN。在输入图中聚合噪声边可能会损害 GNN 的表示学习,尤其是当层堆叠得更深时。 所以采用广泛使用的信息扩散模型 - 独立级联 (IC) ,其中网络中的每个节点都有两种状态,即活动或非活动。初始种子集在时间 𝑡 = 0 时被激活,并开始以离散时间步骤递归地激活它们的传入邻居。

具体来说,在步骤𝑡,在步骤𝑡 − 1 激活的每个用户𝑣将以概率𝑝_𝑢𝑣激活每个进入的非活动邻居𝑢。激活后,每个节点都有一次机会激活其邻居并保持活动状态,直到扩散过程终止而不再激活。
此随机过程按顺序横跨输入图并生成增强图,其中删除了非活动边。与直接删除边(独立删除每条边)不同,每次的活动或非活动边都会影响后续步骤中的激活。
如果𝑢未被其被激活的邻居激活,则此类被激活邻居的影响将受到限制,不会传播到进一步的跳跃。相反,有价值的邻居的激活将促进进一步的激活。 因此,IC 增强可以更好地捕捉社会影响力的级联传播,并实现去噪图增强。
原始IC中每个用户只能被一个邻居激活,文中通过允许不同的邻居重新激活来放宽它,这更真实地反映了不断发展的扩散过程。最后,如果没有激活或达到𝑚𝑎𝑥_𝑖𝑡𝑒𝑟,则传播终止。根据六度分离理论设置 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 5。

IC 遍历社交图谱,丢弃不活跃的边以生成增强图谱,从而实现稳健的社交影响力建模。为了确保增强的有效性,文中设计了两个自监督对比任务,以促进最佳社交图谱增强。

文中引入新的两个损失为层级对比损失和基于信息瓶颈的对比损失,分别用于两个对比学习。共有四个损失,处理上述两个还有BPR损失和熵正则化。总损失如下:

此外还分析了空间复杂度,比主流的更为轻量化,时间复杂度与用户和网络规模呈线性关系。

第四章 结果分析

首先与两个最近的去噪方法在两个数据集进行了对比:


表格也显示了明显更优秀

此外还进行了自对比:

也对实际情况进行了比较
 

 总结

在本文中,作者提出了一种新颖的去噪社交推荐器 SSD-ICGA,它实现了自监督的社交去噪,从而实现了稳健的社交推荐。具体来说,利用独立级联 (IC) 模型来模拟社交网络中的影响扩散,并生成增强社交图,以实现稳健的社交影响建模。通过数据分析,发现 (1) 社交噪音可能来自相似度较低的邻居;(2) 邻居之间存在社交影响的层次结构:意见领袖 (OL) > 相似度较高的邻居 > 相似度较低的邻居。在这些观察的指导下,将 IC 增强与分层对比损失和基于信息瓶颈的对比损失相结合,以实现有效的自我监督,从而获得去噪的社交视角。在两个公共数据集上进行的大量实验证明了 SSD-ICGA 的有效性和稳健性。

引用文章:
[1]Sun Y, Sun Z, Du Y, et al. Self-Supervised Denoising through Independent Cascade Graph Augmentation for Robust Social Recommendation[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024: 2806-2817.

原文链接:Self-Supervised Denoising through Independent Cascade Graph Augmentation for Robust Social Recommendation | Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

 项目地址:GitHub - sunyc123r/SSD-ICGA: The code implementation for "Self-Supervised Denoising through Independent Cascade Graph Augmentation for Robust Social Recommendation"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值