文本相似度 Text Similarity
若需计算文本间的相似度,需解决以下两方面问题:
1、文本向量化:如何将文本转换为可计算的向量,即embedding。
2、相似度计算:如何计算得到向量的相似度 similarity。
相似度计算
余弦相似度
计算两个向量的余弦夹角
当余弦夹角越小,余弦值越接近1,即认为两者方向一致
当余弦夹角越接近90度(正交),余弦值越接近0,即认为两者方向不一致。
当余弦夹角越接近180度,余弦值越接近-1,即认为两者方向相反。
文本向量化
BERT
使用开源BERT模型,得到每个字的向量,取平均,作文本向量。
SBERT
在BERT基础上搭建模型训练。
Universal Sentence Encoder(USE)
一种通用句子编码:Universal Sentence Encoder
Siamese Manhattan LSTM model
参考文档