文本相似度 Text Similarity

本文探讨了计算文本相似度的两大关键步骤:文本向量化(如BERT、SBERT和Universal Sentence Encoder)和相似度计算(如余弦相似度)。通过这些方法,可以将文本转换为可计算的向量,并评估它们之间的相似性。对于文本向量化,介绍了从预训练模型BERT到专门训练的Sentence-BERT和通用句子编码器USE。在相似度计算中,余弦相似度被用于量化两个向量的方向一致性。
摘要由CSDN通过智能技术生成

文本相似度 Text Similarity

若需计算文本间的相似度,需解决以下两方面问题:
1、文本向量化:如何将文本转换为可计算的向量,即embedding。
2、相似度计算:如何计算得到向量的相似度 similarity。

相似度计算

余弦相似度

计算两个向量的余弦夹角
当余弦夹角越小,余弦值越接近1,即认为两者方向一致
当余弦夹角越接近90度(正交),余弦值越接近0,即认为两者方向不一致。
当余弦夹角越接近180度,余弦值越接近-1,即认为两者方向相反。

余弦相似度—百度百科

文本向量化

BERT

使用开源BERT模型,得到每个字的向量,取平均,作文本向量。

SBERT

在BERT基础上搭建模型训练。

Sentence-BERT详解

Universal Sentence Encoder(USE)

一种通用句子编码:Universal Sentence Encoder

Siamese Manhattan LSTM model

git地址

参考文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值