联邦学习
文章平均质量分 84
‘Atlas’
人工智能从业者,崇尚技术,享受学习的过程。主要研究方向:跨模态、文生图、虚拟试衣、目标检测、分割、关键点检测等
展开
-
联邦学习-pFedHN算法解读
文章目录解决问题创新点算法原理实验结果优缺点论文地址:《Personalized Federated Learning using Hypernetworks》github地址:https://github.com/AvivSham/pFedHN解决问题每个客户端保留自己独有模型;限制通讯成本;创新点通过深度网络学习模型融合策略;将模型通过embembedding为向量vi用以表示模型。算法原理FedHN原理:从所有客户端中随机挑选客户端i;更新该客户端模型参数θi\thet原创 2021-05-30 16:21:48 · 1188 阅读 · 0 评论 -
联邦学习-FedAvg、FedAMP论文解读
联邦学习-FedAvg、FedAMP论文解读原创 2021-05-29 23:53:24 · 17789 阅读 · 0 评论