Python 安装numpy和pandas以及解决出现无效命令的方法

本文介绍了如何在Windows上安装Python、numpy和pandas,包括下载Python、配置环境变量、使用pip和wheel文件安装库,以及解决遇到的无效命令问题。此外,还建议使用Anaconda和PyCharm来避免类似安装困扰。
摘要由CSDN通过智能技术生成

为了安装numpy和pandas,居然花了大半天的时间研究。下面给出了Python有关的安装步骤及需要注意的几点:

1、下载安装包,安装Python(注意版本和电脑系统匹配问题),安装时最好注意自己的安装位置,这里我安在C:\Program Files\Python3.7(我是3.7版本);

2、装好后一定要注意环境变量配置,右击 计算机-属性-高级系统设置-环境变量-系统变量,找到path-编辑,加上英文分号;在分号后面加上python.exe所在的路径,也就是C:\Program Files\Python3.7,确定;

3、在“搜索程序和文件“里输入Python。打开之后会显示版本的信息,即为安装成功。

4、安装numpy时,打开cmd输入相应的安装命令时总是不成功,出现各种问题。之后找到的一个解决方案是先安装需要用到pip.exe,我这里根据教程是

参考资源链接:[Python数据分析入门:numpypandas基础教程](https://wenku.csdn.net/doc/672drpz73g?utm_source=wenku_answer2doc_content) 在数据分析领域,掌握NumPypandas是基础技能之一。通过学习《Python数据分析入门:numpypandas基础教程》,你可以系统地了解到如何运用这两个库进行数据处理和分析。针对泰坦尼克号乘客数据集的预处理和初步分析,可以按照以下步骤进行: 首先,使用NumPy创建数组并进行数据的初步处理。NumPy数组的创建通常从CSV或其他格式的数据文件开始。例如,加载CSV文件数据到NumPy数组中可以使用`np.genfromtxt`或`np.loadtxt`等函数。在处理泰坦尼克号数据集时,你可能需要处理缺失数据,替换无效值,并对数据类型进行转换等。 其次,利用pandas库进一步分析和处理数据。pandas的DataFrame是处理表格数据的理想选择。通过读取CSV文件到DataFrame中,例如使用`pd.read_csv`函数,你可以方便地查看数据集的前几行,了解数据结构和特征。对于缺失数据的处理,pandas提供了`fillna`、`dropna`等函数来填充或删除缺失值。同时,可以利用`groupby`、`describe`等函数进行数据分组统计和描述性统计分析。 完成数据的加载和初步清洗后,你可以进行更深入的数据探索,例如使用`value_counts`函数来分析某些特定列的分布情况,用`corr`函数计算不同特征之间的相关系数,或者使用`hist`函数生成直方图来观察数值特征的分布。 最后,为了更好地理解数据,可能需要进行数据可视化。尽管这一步不是严格意义上的数据预处理,但对于数据分析和探索非常有帮助。可以使用matplotlib或seaborn等库来绘制各种图表,以直观地展示数据的特征。 在你的学习过程中,这份教程《Python数据分析入门:numpypandas基础教程》将提供丰富的实例和项目案例,帮助你更好地理解理论知识,并将其应用到实际问题中。通过实践泰坦尼克号乘客数据集的分析,你将掌握如何使用NumPypandas进行数据处理和分析的全流程,为后续机器学习等高级数据分析打下坚实的基础。 参考资源链接:[Python数据分析入门:numpypandas基础教程](https://wenku.csdn.net/doc/672drpz73g?utm_source=wenku_answer2doc_content)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值