数据结构笔记chapter05_5_树的应用:二叉排序树+平衡二叉树+哈夫曼树

本文详细介绍了二叉排序树(BST)的定义、查找、插入和删除操作,强调了查找效率分析。接着探讨了平衡二叉树(AVL)的概念,包括插入操作和如何调整不平衡问题。最后,讨论了哈夫曼树的带权路径长度、定义、构造过程以及哈夫曼编码的应用,指出其在数据压缩中的作用。
摘要由CSDN通过智能技术生成

5.5.1 二叉排序树(BST)

1.二叉排序树定义 2.1查找 2.2插入 2.3删除 3.查找效率分析

1.二叉排序树定义

二叉排序树,又称二叉查找树(BST,Binary Search Tree)

满足性质:左子树结点值<根结点值<右子树结点值

即,进行中序遍历,可以得到一个递增的有序序列。

可以用于元素的有序组织、搜索。

//二叉排序树结点
typedef struct BSTNode{
    int key;
    struct BSTNode *lchild,*rchild;
}BSTNode,*BSTree;

2.1二叉排序树的查找

//在二叉排序树中查找值为key的结点
BSTNode *BST_Search(BSTree T,int key){
    
    while(T!=NULL&&key!=T->key){  //树空或者等于根结点值,则结束循环
        if(key<T->key)  T=T->lchild; //小于,则在左子树上查找
        else T=T->rchild;  //大于,则在右子树上查找
    }
    return T;
}

上述复杂度为O(1);

也可以使用递归实现;但最坏的空间复杂度为O(n)

2.2二叉排序树的插入

若原二叉排序树为空,则直接插入;否则,需要先查找插入的位置。

//在二叉排序树插入关键字为k的新结点ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值