神仙操作——炒鸡树状数组

数据结构简介

炒鸡树状数组(名字我取的,以下简称炒组),是一种很神奇,很强大的树状数组。
它支持四种功能:单点修改, 单点查询, 区间修改, 区间查询。
举个栗子:
LGOJ P3372 【模板】线段树 1
大家看看这道例题。

题目分析

PART 0

这是一道线段树模板题。但是,我们都知道:线段树码量较大,常数也较大。有没有一种更优化的做法呢?
没错,就是我们今天所讲的炒组!

PART 1

我们先考虑如何完成区间修改。
这好做啊!我们可以使用树状数组 t 1 [ . . . ] t1[...] t1[...]来维护原数组 a [ ] a[] a[]的差分,这样我们就可以在 O ( l o g n ) O(logn) O(logn)内完成我们的区间修改操作。十分简单。

PART 2

可是,我们发现,一旦我们维护了差分,我们的区间修改就有些麻烦了!
怎么办?
大家看看下面这堆数学推导。
假设我们要求 a [ 1... n ] a[1 ... n] a[1...n]的和
我们知道:
a [ 1 ] + a [ 2 ] + . . . + a [ n ] a[1]+a[2]+...+a[n] a[1]+a[2]+...+a[n]
= ( t 1 [ 1 ] ) + ( t 1 [ 1 ] + t 1 [ 2 ] ) + . . . + ( t 1 [ 1 ] + t 1 [ 2 ] + . . . + t 1 [ n ] ) =(t1[1])+(t1[1]+t1[2])+...+(t1[1]+t1[2]+...+t1[n]) =(t1[1])+(t1[1]+t1[2])+...+(t1[1]+t1[2]+...+t1[n])
= t 1 [ 1 ] ∗ n + t 1 [ 2 ] ∗ ( n − 1 ) + . . . + t 1 [ n ] ∗ 1 =t1[1]*n+t1[2]*(n-1)+...+t1[n]*1 =t1[1]n+t1[2](n1)+...+t1[n]1
= n ∗ ( t 1 [ 1 ] + t 1 [ 2 ] + . . . + t 1 [ n ] ) − ( t 1 [ 1 ] ∗ 0 + t 1 [ 2 ] ∗ 1 + . . . + t 1 [ n ] ∗ ( n − 1 ) =n*(t1[1]+t1[2]+...+t1[n])-(t1[1]*0+t1[2]*1+...+t1[n]*(n-1) =n(t1[1]+t1[2]+...+t1[n])(t1[1]0+t1[2]1+...+t1[n](n1)
我们设 t 2 [ i ] = t 1 [ i ] ∗ ( i − 1 ) t2[i]=t1[i]*(i-1) t2[i]=t1[i](i1)
则原式可化为
a [ 1 ] + a [ 2 ] + . . . + a [ n ] a[1]+a[2]+...+a[n] a[1]+a[2]+...+a[n]
= n ∗ ( t 1 [ 1 ] + t 1 [ 2 ] + . . . + t 1 [ n ] ) − ( t 2 [ 1 ] + t 2 [ 2 ] + . . . + t 2 [ n ] ) =n*(t1[1]+t1[2]+...+t1[n])-(t2[1]+t2[2]+...+t2[n]) =n(t1[1]+t1[2]+...+t1[n])(t2[1]+t2[2]+...+t2[n])
我们只要将 t 1 , t 2 t1,t2 t1,t2用树状数组维护就好了!
总时间复杂度:O(logn)

详细代码

#define USEFASTERREAD 1

#define rg register
#define inl inline
#define DEBUG printf("qwq\n")
#define DEBUGd(x) printf("var %s is %lld", #x, ll(x))
#define DEBUGf(x) printf("var %s is %llf", #x, double(x))
#define putln putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
typedef unsigned long long ull;
#include<cstdio>

#if USEFASTERREAD
char In[1 << 20], *ss = In, *tt = In;
#define getchar() (ss == tt && (tt = (ss = In) + fread(In, 1, 1 << 20, stdin), ss == tt) ? EOF : *ss++)
#endif
namespace IO {
	inl void RS() {freopen("test.in", "r", stdin), freopen("test.out", "w", stdout);}
	inl ll read() {
		ll x = 0, f = 1; char ch = getchar();
		for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
		for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
		return x * f;
	}
	inl void write(ll x) {
		if(x < 0) {putchar('-'); x = -x;}
		if(x >= 10) write(x / 10);
		putchar(x % 10 + '0');
	}
	inl void writeln(ll x) {write(x), putln;}
	inl void writesp(ll x) {write(x), putsp;}
}
using namespace IO;
template<typename T> inline T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> inline T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> inline void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
template<typename T> inline T Abs(const T& x) {return x < 0 ? -x : x;}

const int MAXN = 100005;

int N, M;
struct trarray {
    ll t[MAXN];
    static inl int lowbit(int x) {return x & (-x);}
    void Add(int x, ll k) {
        for(rg int i = x; i <= N; i += lowbit(i)) t[i] += k;
    }
    ll Sum(int x) {
        ll ans = 0;
        for(rg int i = x; i; i -= lowbit(i)) ans += t[i];
        return ans;
    }
}t1, t2;

int main() {
	//RS();
    N = read(), M = read();
    int la = 0;
    Rep(i, 1, N) {
        int x = read();
        t1.Add(i, x - la); //维护差分
        t2.Add(i, (x - la) * (i - 1));
        la = x;
    }
    while(M--) {
        int opt = read(), l = read(), r = read();
        if(opt == 1) {
            ll k = read();
            t1.Add(l, k);
            t1.Add(r + 1, -k);
            t2.Add(l, k * (l - 1));
            t2.Add(r + 1, -k * r);
        } else {
            writeln((r * t1.Sum(r) - (l - 1) * t1.Sum(l - 1)) - (t2.Sum(r) - t2.Sum(l - 1)));
        }
    }

	return 0;
}

NICE!

TIP

如果你想完成单点查询和单点修改怎么办?
把一个点看成一个长度为1的区间不就好了吗2333

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日居月诸Rijuyuezhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值