数据结构简介
炒鸡树状数组(名字我取的,以下简称炒组),是一种很神奇,很强大的树状数组。
它支持四种功能:单点修改, 单点查询, 区间修改, 区间查询。
举个栗子:
LGOJ P3372 【模板】线段树 1
大家看看这道例题。
题目分析
PART 0
这是一道线段树模板题。但是,我们都知道:线段树码量较大,常数也较大。有没有一种更优化的做法呢?
没错,就是我们今天所讲的炒组!
PART 1
我们先考虑如何完成区间修改。
这好做啊!我们可以使用树状数组
t
1
[
.
.
.
]
t1[...]
t1[...]来维护原数组
a
[
]
a[]
a[]的差分,这样我们就可以在
O
(
l
o
g
n
)
O(logn)
O(logn)内完成我们的区间修改操作。十分简单。
PART 2
可是,我们发现,一旦我们维护了差分,我们的区间修改就有些麻烦了!
怎么办?
大家看看下面这堆数学推导。
假设我们要求
a
[
1...
n
]
a[1 ... n]
a[1...n]的和
我们知道:
a
[
1
]
+
a
[
2
]
+
.
.
.
+
a
[
n
]
a[1]+a[2]+...+a[n]
a[1]+a[2]+...+a[n]
=
(
t
1
[
1
]
)
+
(
t
1
[
1
]
+
t
1
[
2
]
)
+
.
.
.
+
(
t
1
[
1
]
+
t
1
[
2
]
+
.
.
.
+
t
1
[
n
]
)
=(t1[1])+(t1[1]+t1[2])+...+(t1[1]+t1[2]+...+t1[n])
=(t1[1])+(t1[1]+t1[2])+...+(t1[1]+t1[2]+...+t1[n])
=
t
1
[
1
]
∗
n
+
t
1
[
2
]
∗
(
n
−
1
)
+
.
.
.
+
t
1
[
n
]
∗
1
=t1[1]*n+t1[2]*(n-1)+...+t1[n]*1
=t1[1]∗n+t1[2]∗(n−1)+...+t1[n]∗1
=
n
∗
(
t
1
[
1
]
+
t
1
[
2
]
+
.
.
.
+
t
1
[
n
]
)
−
(
t
1
[
1
]
∗
0
+
t
1
[
2
]
∗
1
+
.
.
.
+
t
1
[
n
]
∗
(
n
−
1
)
=n*(t1[1]+t1[2]+...+t1[n])-(t1[1]*0+t1[2]*1+...+t1[n]*(n-1)
=n∗(t1[1]+t1[2]+...+t1[n])−(t1[1]∗0+t1[2]∗1+...+t1[n]∗(n−1)
我们设
t
2
[
i
]
=
t
1
[
i
]
∗
(
i
−
1
)
t2[i]=t1[i]*(i-1)
t2[i]=t1[i]∗(i−1)
则原式可化为
a
[
1
]
+
a
[
2
]
+
.
.
.
+
a
[
n
]
a[1]+a[2]+...+a[n]
a[1]+a[2]+...+a[n]
=
n
∗
(
t
1
[
1
]
+
t
1
[
2
]
+
.
.
.
+
t
1
[
n
]
)
−
(
t
2
[
1
]
+
t
2
[
2
]
+
.
.
.
+
t
2
[
n
]
)
=n*(t1[1]+t1[2]+...+t1[n])-(t2[1]+t2[2]+...+t2[n])
=n∗(t1[1]+t1[2]+...+t1[n])−(t2[1]+t2[2]+...+t2[n])
我们只要将
t
1
,
t
2
t1,t2
t1,t2用树状数组维护就好了!
总时间复杂度:O(logn)
详细代码
#define USEFASTERREAD 1
#define rg register
#define inl inline
#define DEBUG printf("qwq\n")
#define DEBUGd(x) printf("var %s is %lld", #x, ll(x))
#define DEBUGf(x) printf("var %s is %llf", #x, double(x))
#define putln putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
typedef unsigned long long ull;
#include<cstdio>
#if USEFASTERREAD
char In[1 << 20], *ss = In, *tt = In;
#define getchar() (ss == tt && (tt = (ss = In) + fread(In, 1, 1 << 20, stdin), ss == tt) ? EOF : *ss++)
#endif
namespace IO {
inl void RS() {freopen("test.in", "r", stdin), freopen("test.out", "w", stdout);}
inl ll read() {
ll x = 0, f = 1; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
return x * f;
}
inl void write(ll x) {
if(x < 0) {putchar('-'); x = -x;}
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
inl void writeln(ll x) {write(x), putln;}
inl void writesp(ll x) {write(x), putsp;}
}
using namespace IO;
template<typename T> inline T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> inline T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> inline void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
template<typename T> inline T Abs(const T& x) {return x < 0 ? -x : x;}
const int MAXN = 100005;
int N, M;
struct trarray {
ll t[MAXN];
static inl int lowbit(int x) {return x & (-x);}
void Add(int x, ll k) {
for(rg int i = x; i <= N; i += lowbit(i)) t[i] += k;
}
ll Sum(int x) {
ll ans = 0;
for(rg int i = x; i; i -= lowbit(i)) ans += t[i];
return ans;
}
}t1, t2;
int main() {
//RS();
N = read(), M = read();
int la = 0;
Rep(i, 1, N) {
int x = read();
t1.Add(i, x - la); //维护差分
t2.Add(i, (x - la) * (i - 1));
la = x;
}
while(M--) {
int opt = read(), l = read(), r = read();
if(opt == 1) {
ll k = read();
t1.Add(l, k);
t1.Add(r + 1, -k);
t2.Add(l, k * (l - 1));
t2.Add(r + 1, -k * r);
} else {
writeln((r * t1.Sum(r) - (l - 1) * t1.Sum(l - 1)) - (t2.Sum(r) - t2.Sum(l - 1)));
}
}
return 0;
}
NICE!
TIP
如果你想完成单点查询和单点修改怎么办?
把一个点看成一个长度为1的区间不就好了吗2333