Kruskal重构树 学习笔记
前言
Kruskal重构树是一种比较冷门的算法,但在解决某些问题时相当好用。
例题1 BZOJ3732 Network
在一个 n n n 点 m m m 边的无向连通图中多次询问两点间的最长边最小值(即两点间的瓶颈)。
这是一个经典的 Kruskal重构树问题。
这个问题其实也可以直接用最小生成树来解决。因为要最小化最长边,选择最小生成树上的边肯定是不劣的。于是我们可以在最小生成树上倍增得到答案。
而Kruskal重构树则是这样的做的:在用Kruskal合并连通块时,顺便维护一个树的结构。比如要合并连通块 f u fu fu 和 f v fv fv,中间有 权值为 w w w 的边相连,就新建一个节点作为 合并后连通块的根,赋予点权为 w w w,并且设置左右儿子为 f u fu fu 和 f v fv fv。Kruskal做完后,我们就构造了具有以下特征的树:
- 叶子节点是原图的 n n n 个点,没有点权。
- 非叶子节点代表着原图中 在生成树上的 n − 1 n-1 n−1 条边,点权就是原图的边权。
- 由于合并时边权有一定次序,我们发现得到的树是个二叉堆(不考虑叶子节点)。如果是做最小(大)生成树,得到的是大(小)根堆。
- 两点于树上的路径上的各点,相当于原图上两点走最小(大)生成树的路径上的各边。
这个树叫做 Kruskal重构树。易得这棵树一共有 2 n − 1 2n-1 2n−1 个点, 2 n − 2 2n-2 2n−2 条边。
回到这题。很容易知道,我们要找的,就是在 Kruskal 重构树上两点路径中的最长边。或者准确点,两点路径上的点权最大者。别犯浑用倍增做啊!由于 Kruskal 重构树是个堆,点权最大的就是两点的 lca 了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
char In[1 << 20], *ss = In, *tt = In;
#define getchar() (ss == tt && (tt = (ss = In) + fread(In, 1, 1 << 20, stdin), ss == tt) ? EOF : *ss++)
ll read() {
ll x = 0, f = 1; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
return x * f;
}
const int MAXN = 30005;
const int MAXM = 60005;
int n, m, k, num, upto[MAXN], val[MAXN], head[MAXN], ver[MAXM], nxt[MAXM], cnt, dep[MAXN], sz[MAXN], fa[MAXN], son[MAXN], top[MAXN];
struct Edge {int u, v, w;}e[MAXM];
bool cmp(const Edge& a, const Edge& b) {return a.w < b.w;}
int getup(int u) {return u == upto[u] ? u : upto[u] = getup(upto[u]);}
void addedge(int u, int v) {ver[++cnt] = v; nxt[cnt] = head[u]; head[u] = cnt;}
void Kruskal() {
num = n;
sort(e + 1, e + 1 + m, cmp);
for(int i = 1; i <= n; i++) upto[i] = i;
for(int i = 1; i <= m; i++) {
int fu = getup(e[i].u), fv = getup(e[i].v);
if(fu == fv) continue;
val[++num] = e[i].w; upto[num] = upto[fu] = upto[fv] = num;
addedge(fu, num); addedge(num, fu); addedge(fv, num); addedge(num, fv);
}
}
void dfs1(int u, int f) {
dep[u] = dep[f] + 1; sz[u] = 1; fa[u] = f; son[u] = 0;
for(int i = head[u]; i; i = nxt[i]) if(ver[i] != f) {
int v = ver[i]; dfs1(v, u); sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tprt) {
top[u] = tprt; if(son[u]) dfs2(son[u], tprt);
for(int i = head[u]; i; i = nxt[i]) if(ver[i] != fa[u] && ver[i] != son[u]) {
int v = ver[i]; dfs2(v, v);
}
}
int Lca(int u, int v) {
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) swap(u, v);
u = fa[top[u]];
}
return dep[u] > dep[v] ? v : u;
}
int main() {
n = read(); m = read(); k = read();
for(int i = 1; i <= m; i++) e[i].u = read(), e[i].v = read(), e[i].w = read();
Kruskal();
int rt = getup(1);
dfs1(rt, 0); dfs2(rt, rt);
for(int i = 1; i <= k; i++) {
int a = read(), b = read();
printf("%d\n", val[Lca(a, b)]);
}
return 0;
}
例题2 [NOI2018] 归程
这道题与 Kruskal重构树无关的部分我直接写了篇题解,这里仅提一下这样一个小问题:
在一个无向连通图中多次询问,每次给出点 v v v 和限制 p p p, 请回答仅经过边权 ≤ p \le p ≤p 的边可以到达点的个数。(和原题稍有转化)
这是另一个 Kruskal 重构树的模型。
这个问题似乎不好做,不过有个简单易行的离线做法。按限制把询问升序排序,在做最小生成树的同时回答询问即可。
在线做法?我只知道Kruskal重构树,可能是我太菜
我们建完Kruskal重构树后,问题就转化为:不经过点权 > p >p >p 的点,最多可以到多少个点。然后由于它是一棵树,我们能去的点都在一个子数内。倍增找到深度最小的 点权 ≤ p \le p ≤p 的点,询问子树信息即可。