流水作业调度问题,Johnson算法 & LOJ#10003. 「一本通 1.1 例 4」加工生产调度 解题报告

题目链接

LOJ#10003. 「一本通 1.1 例 4」加工生产调度

解题思路

本题可采用Johnson算法
在本题中,将任务以 m i n ( a i , b i ) min(a_i,b_i) min(ai,bi)排序后,将 a i ≤ b i a_i\leq b_i aibi的任务顺序放在工作队列的前部,将 a i > b i a_i>b_i ai>bi的任务逆序放在序列的后部。下面会通过证明,来说明这样可以得到最优解。


证明(大量数学,慎入)
T 【 S , t 】 T【S,t】 TS,t表示 t t t时刻后B机器可以加工A机器加工完的零件集合 S = { J 1 , J 2 , . . . , J n } S=\{J_1,J_2,...,J_n\} S={J1,J2,...,Jn},这样的话, S S S全部加工完所需的最短时间。
T 【 S , t 】 = m i n ( a i + T 【 S − { J i } , b i + m a x ( 0 , t − a i ) 】 ) T【S,t】=min(a_i+T【S-\{J_i\},b_i+max(0,t-a_i)】) TS,t=min(ai+TS{Ji},bi+max(0,tai))
设若 i i i工件在 j j j工件前处理能得到更优解,则我们有
T 【 S , t 】 = a i + T 【 S − { J i } , b i + m a x ( 0 , t − a i ) 】 T【S,t】=a_i+T【S-\{J_i\},b_i+max(0,t-a_i)】 TS,t=ai+TS{Ji},bi+max(0,tai)
= a i + a j + T 【 S − { J i , J j } , b j + m a x ( b i + m a x ( 0 , t − a i ) − a j , 0 ) 】 =a_i+a_j+T【S-\{J_i,J_j\},b_j+max(b_i+max(0,t-a_i)-a_j,0)】 =ai+aj+TS{Ji,Jj},bj+max(bi+max(0,tai)aj,0)
= a i + a j + T 【 S − { J i , J j } , T i j 】 =a_i+a_j+T【S-\{J_i,J_j\},T_{ij}】 =ai+aj+TS{Ji,Jj},Tij
其中
T i j = b j + m a x ( b i + m a x ( 0 , t − a i ) − a j , 0 ) T_{ij}=b_j+max(b_i+max(0,t-a_i)-a_j,0) Tij=bj+max(bi+max(0,tai)aj,0)
= b i + b j − a j + m a x ( 0 , t − a i , a j − b i ) =b_i+b_j-a_j+max(0,t-a_i,a_j-b_i) =bi+bjaj+max(0,tai,ajbi)
= b i + b j − a i − a j + m a x ( a i , t , a i + a j − b i ) =b_i+b_j-a_i-a_j+max(a_i,t,a_i+a_j-b_i) =bi+bjaiaj+max(ai,t,ai+ajbi)
好,化简到这一步,我们采取贪心的常用方法:
若调换 i i i, j j j顺序,有
T ′ 【 S , t 】 = a i + a j + T 【 S − { J i , J j } , T j i 】 T'【S,t】=a_i+a_j+T【S-\{J_i,J_j\},T_{ji}】 TS,t=ai+aj+TS{Ji,Jj},Tji
其中
T j i = b i + b j − a i − a j + m a x ( a j , t , a i + a j − b j ) T_{ji}=b_i+b_j-a_i-a_j+max(a_j,t,a_i+a_j-b_j) Tji=bi+bjaiaj+max(aj,t,ai+ajbj)
根据题设有 T ≤ T ′ T\leq T' TT

m a x ( a i , t , a i + a j − b i ) ≤ m a x ( a j , t , a i + a j − b j ) max(a_i,t,a_i+a_j-b_i)\leq max(a_j,t,a_i+a_j-b_j) max(ai,t,ai+ajbi)max(aj,t,ai+ajbj)
其中两边的 t t t相同,不影响答案,故
m a x ( a i , a i + a j − b i ) ≤ m a x ( a j , a i + a j − b j ) max(a_i,a_i+a_j-b_i)\leq max(a_j,a_i+a_j-b_j) max(ai,ai+ajbi)max(aj,ai+ajbj)
a i + a j + m a x ( − a j , − b i ) ≤ a i + a j + m a x ( − a i , − b j ) a_i+a_j+max(-a_j,-b_i)\leq a_i+a_j+max(-a_i,-b_j) ai+aj+max(aj,bi)ai+aj+max(ai,bj)
m a x ( − a j , − b i ) ≤ m a x ( − a i , − b j ) max(-a_j,-b_i)\leq max(-a_i,-b_j) max(aj,bi)max(ai,bj)
m i n ( a i , b j ) ≤ m i n ( a j , b i ) min(a_i,b_j)\leq min(a_j,b_i) min(ai,bj)min(aj,bi)
okk
我们得到了这么个简单式子。
解释解释

a i ≤ a j , a i ≤ b i , b j ≤ a j , b j ≤ b i a_i\leq a_j,a_i\leq b_i,b_j\leq a_j,b_j\leq b_i aiaj,aibi,bjaj,bjbi
这几个条件中必定满足至少一个(特别关注第一个、第四个)
这样,我们就能从感性上理解Johnson算法了

详细代码

#define USEFASTERREAD 1 

#define rg register
#define inl inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>

#if USEFASTERREAD
char In[1 << 20], *ss = In, *tt = In;
#define getchar() (ss == tt && (tt = (ss = In) + fread(In, 1, 1 << 20, stdin), ss == tt) ? EOF : *ss++)
#endif
struct IO {
	void RS() {freopen("test.in", "r", stdin), freopen("test.out", "w", stdout);} 
	template<typename T> inline IO r(T& x)const	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> inline IO w(T x)const {
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> inline IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> inline IO ws(const T& x)const {w(x), putsp; return *this;}
	inline IO l() {putline; return *this;}
	inline IO s() {putsp; return *this;}
}io;
template<typename T> inline T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> inline T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> inline void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
template<typename T> inline T Abs(const T& x) {return x > 0 ? x : -x;} 
#include<algorithm>
using namespace std;
const int MAXN = 1005;
int n;
int a[MAXN];
int b[MAXN];
int m[MAXN];
int id[MAXN];
int ans[MAXN];
bool cmp(int x, int y) {
	return m[x] < m[y];
}
int main() {
    //io.RS();
    io.r(n);
    for(rg int i = 1; i <= n; i++)
		io.r(a[i]);
	for(rg int i = 1; i <= n; i++)
		io.r(b[i]);
    for(rg int i = 1; i <= n; i++) {
		m[i] = Min(a[i], b[i]);
		id[i] = i;
	}
	sort(id + 1, id + 1 + n, cmp);
	int l = 1, r = n;
	for(rg int i = 1; i <= n; i++) {
		int now = id[i];
		if(m[now] == a[now]) ans[l++] = now;
		else ans[r--] = now;
	}
	int at = 0, tt = 0;
	for(rg int i = 1; i <= n; i++) {
		at += a[ans[i]];
		if(tt < at) tt = at;
		tt += b[ans[i]];
	}
	io.wl(tt);
	for(rg int i = 1; i <= n; i++) {
		io.w(ans[i]);
		if(i != n) io.s();
	}
    return 0;
}

Update

哪要推这么多。。。啊我有病
Irressey 的洛谷博客

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日居月诸Rijuyuezhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值