【文献调研】高性能脑电放大器(电极方向)

一、电极位置与信号之间的关系

Heading for motor imagery brain-computer interfaces (MI-BCIs) usable out-of-the-lab: Impact of dry electrode setup on classification accuracy

面向实验室外可用的运动图像脑-机接口(mi-bcis):干式电极设置对分类精度的影响

M. -I. Casso, C. Jeunet and R. N. Roy, “Heading for motor imagery brain-computer interfaces (MI-BCIs) usable out-of-the-lab: Impact of dry electrode setup on classification accuracy,” 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), 2021, pp. 690-693, doi: 10.1109/NER49283.2021.9441410.
2021第十届国际IEEE/EMBS神经工程会议(NER)

1、电极设置

信号是用Enobio32无线脑电图帽记录信号,使用以下32个梳状的干式电极根据10-20系统进行定位。FP1,FP2, AF3, AF4, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6,C3, CZ, C4, T7, T8, CP5, CP1, CP2, CP6, P7, P3, PZ,P4、P8、PO3、PO4、O1、OZ、O2。“相关-多重采样”(CMS)和 “右腿驱动”(DRL)通道被分别放置在左、右乳突上。参与者被要求站着不动,mi应该包括尽可能多的手指运动。
从覆盖整个头皮的32个电极设置开始,通过每一步移除4个电极,定义了7个电极放置配置,直到达到以运动区域上方的c3和c4为中心的至少8个电极设置(图1)。首先去除额叶电极,因为它们的信号受到眼部伪影的高度影响,然后是颞区电极,最后是枕叶区电极。
电极设置:从32个全头皮覆盖到运动区域上方的8个中央电极
图1.电极设置:从32个全头皮覆盖到运动区域上方的8个中央电极

2、四个标准和最先进的分类途径

(1)预处理
数据在8至30赫兹之间用带通滤波器巴特沃斯滤波器进行过滤。使用1s长的滑动窗口,1/16s的重叠,进行超声处理。分类管道被应用于每个窗口。然后,输出被平均值,以获得每个试验的平均分类精度。
(2)方法一:带有LDA分类器的RCSP(RCSP+LDA)
CSP算法的主要思想是找到一个线性的来提高数据的可辨别性,从而简化分类过程。缓解分类过程。这种方法的目的是找到空间滤波器,使一类信号的方差最大化,而另一类信号的方差最小化。
以此类推,适用于所有类。由于其对噪声的敏感性,CSP正则化(rCSP)已被证明是一个更稳健的选择。这个途径遵循Tikhonov方法,该方法对CSP算法的目标进行正则化[1]。
该方法通过增加一个补偿函数和一个手动定义的正则化参数来规范CSP算法的目标函数。在文献的例子中是0.5。在每个条件下得到6个过滤器有一个大块的平均协方差更新。接下来,过滤后的数据被用于训练LDA分类器,该分类器可以找到一个线性组合,将数据分成两个类别(即左手和右手的MI)。虽然估计值可能不是尽管估计值可能不是最优的,但线性分类器已被证明在单次试验分类中是有效的。
(3)方法二:带SVM分类器的rCSP(rCSP+SVM)
这里,与方法1在分类前使用了同样的rCSP空间过滤步骤,但与SVM相结合。SVM分类器用核函数将数据投射到一个更高的维度空间,并找到一个超平面,它将尽可能以最高的余量来区分不同的类别。该优化问题和分类器的性能不仅取决于训练数据,而且还取决于正确选择补偿和内核参数的。在本研究中,该途径的补偿项为200,我们使用径向基函数(RBF)核。基于参数选择[2]中提出的选择方案。

[1] F. Lotte, M. Congedo, A. L´ecuyer, F. Lamarche, and B. Arnaldi,“A review of classification algorithms for eeg-based brain–computer interfaces,” J Neur Eng, vol. 4, no. 2, p. R1, 2007.
[2]A. Rojas and A. Nandi, “Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines,” Mech Syst Sign Process, vol. 20, pp. 1523–1536, 2006.

(4)方法三:与黎曼平均数的最小距离(MDRM)
基于黎曼几何的方法的一个显著优势是,算法直接处理数据。几何学方法的一个重要优势是,这些算法直接处理数据嵌有空间信息的协方差矩阵。分类所需的空间信息,从而节省计算时间。对于MDRM来说,首先需要估计训练数据的协方差矩阵,称为样协方差矩阵(SCM),在我们的例子中,用Oracle近似收缩(OAS)估计器。SCM矩阵被认为是一个正定矩阵,因此属于Riemannian流形。优化问题成为找到一组训练数据的SCM矩阵和每一个类内协方差矩阵之间的最小平均黎曼几何距离。
(5)方法四:黎曼切空间中的SVM(RTS+SVM)
与SVM分类器一样,使用黎曼切空间的分类是基于超平面投影。该方法的主要思想是将SCM矩阵映射到
在数据的几何平均值中找到黎曼切空间。这种投影可以找到空间向量。将其作为特征向量进行分类,维度为
n(n+1)/2,其中n是变量的数量。该方法中使用的分类器是SVM,其补偿项和核配置与方法相同。

3、结论

结果显示电极设置/数量对所有方法的分类有显著影响, 与其他方法相比,12个和8个电极设置的分类准确性显著下降。 电极设置和方法之间也存在着显著的相互作用。事实上, 8个和12个电极设置的准确性明显下降。 与其他设置相比,rCSP + LDA和 rCSP +SVM管道,32和28个电极设置的准确率达到最高。。然而,对于 mdrm管道,在不同的电极设置之间没有明显的差异。 准确率没有显著差异。 分类准确率保持稳定,尽管在所有管道中明显 所有管道中最低的。最后,关于RTS +SVM管道, 与此方法达到的最高分类准确率相比,8个电极设置的分类准确率明显下降。 与此方法达到的最高精度相比,即与20和24个 电极设置(p < 0.05)。
结果表明,选择信号处理管道作为电极数量的一个函数的重要性,并建议RCSP+LDA和rCSP+SVM管道至少需要16个电极才能将分类准确率维持在调整后的机会水平之上,而RTS+SVM管道至少需要12个电极。
RTS+SVM管线至少需要12个。所有来自MDRM管道的所有结果都保持在调整后的机会水平以下。
最高的分类精度是使用RTS+SVM管线达到了最高的分类准确率,20个电极设置的平均准确率为70%。
有趣的是,当把电极设置从32个减少到20个时,该管道的分类准确率提高了。32个和28个电极的设置达到了平均准确率低于调整后的机会水平。这种准确率的提高表明,来自前额的信号电极的信号(只保留在32和28个电极的设置中)可能会在没有空间过滤的情况下,可能会损害MI的分类过程,或存在一些与该管道有关的过拟合现象。枕叶通道在所有设置和分类方法中都被保留。此外还有运动区。这可能是由于在任务中的注意力参与。它也可能反映了视觉MI策略的使用,需要感觉运动和视觉皮层。

注:需谨慎对待该结果,该结果来源仅10位被试者,其中8位并非BCI专业人员。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值