一、定义
二、Jordan块
一个Jordan块即是一个由特征值为主对角线元素,特征值的重数为阶数的矩阵。
例如:(λ-3)2(λ-4)(λ-5)4=0;
λ1,2=3;λ3=4;λ4,5,6,7=5;
对应 的Jordan块为:
[
3
1
1
3
]
[
4
]
[
5
1
0
0
0
0
5
1
0
0
0
0
5
1
0
0
0
0
5
1
]
\begin{gathered} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \quad \begin{bmatrix} 4 \end{bmatrix} \quad \begin{bmatrix}5 & 1 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0& 5 & 1 \end{bmatrix} \end{gathered}
[3113][4]
50001500015000150001
三、Jordan标准型
Jordan标准型就是将几个Jordan块以对角线排列在一起形成的与A阶数相同的大矩形。
【矩阵理论】Jordan标准型的理解
于 2023-02-14 15:15:08 首次发布