【矩阵理论】Jordan标准型的理解

Jordan块是矩阵理论中的一个重要概念,它由特征值构成主对角线,非对角线上元素通常为1。文章详细介绍了Jordan块的定义,给出了一个示例展示如何形成Jordan块。Jordan标准型则是将Jordan块按照对角线排列,形成与原始矩阵同阶的大矩阵,用于表示矩阵的线性变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义
在这里插入图片描述二、Jordan块
一个Jordan块即是一个由特征值为主对角线元素,特征值的重数为阶数的矩阵。
例如:(λ-3)2(λ-4)(λ-5)4=0;
λ1,2=3;λ3=4;λ4,5,6,7=5;
对应 的Jordan块为:
[ 3 1 1 3 ] [ 4 ] [ 5 1 0 0 0 0 5 1 0 0 0 0 5 1 0 0 0 0 5 1 ] \begin{gathered} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \quad \begin{bmatrix} 4 \end{bmatrix} \quad \begin{bmatrix}5 & 1 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0& 5 & 1 \end{bmatrix} \end{gathered} [3113][4] 50001500015000150001
三、Jordan标准型
Jordan标准型就是将几个Jordan块以对角线排列在一起形成的与A阶数相同的大矩形。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值