用Visio画深度学习模型矢量图

在写深度学习相关论文时,我们常常需要把模型机构画出来。绘图工具也千差万别,我们一般采用PPT和Visio画图工具。画图以后我们尽可能的使得图片美观,且图片最好为矢量图,图片中的文字可以复制,更重要的是分辨率不会下降。下面就说明一下步骤:

个人觉得PPT画图比Visio好用一些,所以画图都是在PPT上进行的,然后全选复制。下面主要说明一下Visio中的操作步骤。

  1. 新建空白绘图,将从PPT(Word)中复制的图片粘贴到Visio画布上。(这里需要注意有时候系统默认复制过来是组合复制,这样等同复制了一张整图,不是我们想要的,这里需要在---开发工具---组合中选择取消组合)
  2. 复制完成以后,菜单栏中选择设计---大小---适应绘图;(为了放在LaTeX中美观,我们再进行一步)
  3. 开发工具---显示Shapesheet---页---Print Properties下面两行 PageLeftMargin,PageRightMargin,PageTopMargin,PageBottomMargin的值设置为0.然后关闭页。
  4. 重复步骤2在菜单栏中单击设计,在大小下拉菜单中单击适应绘图,就会得到没有页边距的Visio图。
  5. 导出PDF文件,就可以直接插入LaTeX了(值得注意的是,LaTeX编译时请使用PDFLaTeX编译,否则会报错)
### 使用 Visio 绘制深度学习神经网络模型结构图 #### 准备工作 为了有效地创建神经网络模型结构图,在开始之前需了解一些基础概念。人工神经元作为神经网络的基本单元,接收来自其他神经元的输入信号 \(x_1\) 到 \(x_n\) ,这些信号通过带有权重 \(w_{ij}\) 的连接传递给下一个神经元,并应用一个阈值 \(\theta\) 或偏置来决定是否激活该神经元[^2]。 #### 创建图形元素 在 Microsoft Visio 中启动新绘图项目并选择适合的技术图表模板。对于构建神经网络架构图来说,“软件和数据库”类别下的某些模板可能特别有用。接着: - **添加形状**:利用基本形状工具箱中的圆形代表各个神经元节点;矩形可用于表示层的概念。 - **设置样式**:统一设定好所有相同类型的对象的颜色填充、线条颜色等属性以便于区分不同层次以及保持整体美观度。 ```plaintext // 设置形状样式示例 (伪代码) shape.setFillColor("#FFDDAA"); shape.setStrokeColor("#333333"); ``` #### 构建网络拓扑 按照所设计的具体网络配置依次放置各层及其内部节点的位置关系。例如,在前馈型多层感知器中通常会有一个输入层、若干隐藏层最后接上输出层的形式排列开来。每两个相邻之间存在单向箭头指向表明数据流动方向即从前一层流向后一层的同时也体现了加权连接的存在形式[^1]。 #### 添加细节标注 完成框架搭建之后还需要进一步完善图纸信息量。这包括但不限于为每个重要组件附加上必要的文字说明(比如某一层具体负责什么功能)、参数数值标记(像权重矩阵维度大小)等等有助于理解整个系统的运作机制的内容。 #### 自定义模具 如果经常需要制作类似的图表,则可以考虑将常用的布局保存成自定义模具以提高效率。这样以后再遇到相似的任务时就能快速调用预先准备好的模块而无需重复劳动[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值