ubuntu无法打开文件管理器,终端输入nautilus报错 在Linux图行界面准备打开文件管理器时,发现打不开,但其他都可以打开,一顿瞎操作发现可以了。开始发现不能打开以后尝试用命令打开,输入命令出现如下错误:步骤:查看nautilus进程正在运行的内容:ps aux | grep nautilus杀死你看到的所有nautilus进程:sudo kill PIDNUMBER重新启动 nautilus:nautilus -q...
Ubuntu16安装向日葵远程控制软件 目录准备:安装:设置准备:主机版本的向日葵(一般为Windows)从机版本向日葵(这里为Linux Ubuntu16)安装:Windows版本点击安装即可,下面主要说明Linux版本安装。 方法一:终端命令安装在文件夹所在位置打开终端有时候会报错,这时候更新一下经过以上步骤即可安装完成,在software里面打开:可以看到里面没有向...
NeurIPS 2019语义分割相关论文综述 Neural Diffusion Distance for Image Segmentation摘要:扩散距离是一种考虑全局数据结构的,用于测量图上节点之间距离的频谱方法。在这项工作中,我们提出了一种基于光谱近似分解的图谱扩散网络,用于计算图上的扩散距离。该网络是可微分的深度架构,由特征提取和扩散距离模块组成,用于通过端到端训练来计算图像上的扩散距离。我们设计了低分辨率内核匹配损失和高分辨率段匹配损失,以强制网络输出与人类标记的图像段一致。为了计算高分辨率扩散距离或分割蒙版,我们设计了一种基于特征注意
python读取图像方式问题(RGB) 我们在读取图片时由于个人习惯不同,使用不同的包读取,显示图片的结果也不同。所以我们需要作出一些区分。### 方法一:利用PIL中的Image函数Note: 这个函数读取出来不是array格式这时需要用 np.asarray(im) 或者np.array()函数将其转化成array,(区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝)。然后可以使用如下的方法来查...
将文件夹中所有三维图像保存在四维数组中,并保存为.mat格式 我们在读取数据时,时常会遇到.mat格式的图片,这时候我们需要打开可视化。但是我们也在提交测试时,也会需要提交.mat文件。下面我们就将得到的测试图片保存在四维数组中,并生成.mat的字典格式。import numpy as npimport os.pathimport shutilfrom scipy.io.matlab.mio import savemat, loadmatimp...
WinSCP使用详解 1.下载安装,一步一步安装即可,这里没什么难度。2. 配置主机等信息 这里有一点需要注意的是,服务器地址有时会有两个,因为涉及到主服务器和子服务器,一般上面图里填的是子服务器3. 高级设置里设置隧道 保存就可以直接登录啦。WinSCP支持拖拽传送。...
SCI论文Response Letter和Cover Letter模板 在此之前先区分投稿Cover Letter,修改稿Cover Letter和Response Letter,前两个是写给编辑或者Topic Editor,后者是写给Reviwer。一般来说在提交稿件时我们会附带一封Cover Letter主要是一些客套话跟编辑说的。修改稿Cover LetterDear Professor *** :(***指的是负责你论文的领域编辑,不知道名字就写Ed...
.mat图像显示(MATLAB实现) 对于一些数据集是以.mat格式呈现,我们有时候需要可视化出来看一下。MATLAB代码实现如下:clcclose allload('name.mat')imshow(name);但是我们有时候会遇到.mat文件中保存了多张图像,上面的显示方法不能显示全部图片,这时候我们首先输入命令:>>whos查看数据类型,可以看到维度信息 ...
WinEdt编译后PDF previwer灰色(无法预览PDF) 编译完WinEdt文件后一般会自动弹出编译的PDF,也可以点击预览,但是编译完以后PDF previwer是灰色的 查找很多博客和社区,建议重装。我把之前安装的MikTex删了以后编译就可以了。猜测原因:可能是我电脑也安装其他LaTeX编译器导致的miktex不兼容。删除以后我重新下载MikTex并没有再出现上述问题。...
图像质量评价标准NIQE计算 我们在对图像质量进行评价时,之前的一些标准主要依靠PSNR,SSIM等指标,但是超分或者其他低层视觉任务图像评价来说,这些指标并不符合我们人眼感官,所以NIQE(Natural Image Quality Evaluator)应运而生。NIQE指标是一个客观的评价指标,提取自然景观中的特征来对测试图像进行测试,这些特征是拟合成一个多元的高斯模型。这个模型实际上是衡量一张待测图像在多元分布上的差异,...
RCAN复现 在做对比实验中,需要对比RCAN的论文结果,从GitHub上下载源码以后对论文进行复现。论文只支持Torch==0.4.1, torchvision=0.2.1,所以我在复现时候重建新的环境了。避免了很多麻烦,在其他安装包的时候出现了很多问题,这里一一列举。 ImportError: cannot import name 'PILLOW_VERSION' from 'PIL' 解决方案...
torch.cuda.is_available()返回False解决方案 在配置完环境以后运行程序,程序正常运行但是GPU没有任务,此时判断程序没有在GPU上运行。调试步骤:先查看cuda安装有没有问题:nvcc -V 可以看到cuda驱动等安装没有问题。进程序去看.cuda()或者.todevice之类代码,看程序确实放在GPU上了,故排除但是在查看代码是看到这里是一个and,参数args....
Mobaxterm使用详解 疫情在家使用Mobaxterm远程登录服务器。MobaXterm是一个全功能的终端软件。支持SSH连接,支持FTP、串口等协议。下面是基本使用步骤:单击左上角的”Session”按钮 在弹出框中点击“SSH”选项 在“Remote host”中输入绑定的弹性IP 值 勾选“Specify username”并输入用户名 点击OK,输入password,回车进入控制台如...
语义分割数据集详解(PASCAL-VOC2012,Vocbenchmark,Cityscapes) 在语义分割的一些论文中常常会对几个常用的数据集进行验证,以验证算法的优越性,无论是在分割性能还是分割速度上。在一些模型的复现中,由于不同作者的代码风格不同,所有我们有必要根据自己的数据格式进行稍作修改,所以对于数据集的结构了解是必不可少的,下面就几种常用的分割数据集进行解析。PASCAL-VOC2012数据集介绍官网:http://host.robots.ox.ac.uk/pascal/V...
HRNet:Deep High-Resolution Representation Learning for...(论文解读二十五) Title: Deep High-Resolution Representation Learning for Human Pose Estimation(HRNet)Code :PyTorchFrom:CVPR 2019Note data:2020/02/28Abstract:提出一个可以从单张自然图像学习的非条件性生成式模型SinGAN。...
PointRend: Image Segmentation as Rendering(论文解读二十四) Title:PointRend: Image Segmentation as RenderingCode :PyTorchFrom:arxivNote data:2020/02/27Abstract:提出了PointRend(基于点的渲染)神经网络模块,该模块基于迭代细分算法在自适应选择的位置执行基于点的分段预测。Abstract论文提出一种基于生成对抗模型的SinGAN;...
几种梯度下降法以及batch size与learning rate的关系 深度学习被戏称为“炼金师”,我们需要凭借经验对一些参数进行调试,其中在学习过程中梯度和学习率是比较重要的参数。下面我们首先介绍几种梯度下降法,然后再说明批处理大小与学习率之间的关系。GD(Gradient Descent)在整个训练集中计算当前的梯度,选定一个步长进行更新。GD的优点是,基于整个数据集得到的梯度,梯度估计相对较准,更新过程更准确。GD的缺点,一个是当训练集较大时,G...
Python读取Excel表格并存入txt文件 早上把经管的同学处理一些表格数据,遇到一些问题,总结一下。拿到的数据类型如下所示:#导入所需包import osimport matplotlib.pyplot as pltimport numpy as npimport xlrdimport pandas as pd from datetime import datetimefrom pandas import Se...
python指定像素区域裁剪并将裁剪区域在原图标注 在超分任务中,我们需要将图片的局部拿出来对比,凸显我们算法的优越性。如下图所示,我们需要对各模型的局部进行对比,但是每张图裁剪的位置要相同,这里我们利用python简单实现一下。import os import cv2 import matplotlib.pyplot as plt from PIL import Imagepath = "G:\\SR\\results\\s...
BasciSR复现过程 复现代码:BasicSR简单介绍一下代码结构,BasicSR主要是SRResNet,SRGAN,ESRGAN 等几个超分经典模型。下面我按照GitHub上步骤进行调试。首先阅读readme文件,了解代码基本情况,以及运行环境等要求。下面开始我们的复现过程:开始训练SR模型:在GitHub中wiki有详细的说明。以DIV2K数据集为例,其文件夹结构和元信息如下:- DI...
超分论文综述( DualCNN,Deep SR-ITM ,DSGAN) 论文来源:[1] Pan, J., Liu, S., Sun, D., Zhang, J., Liu, Y., Ren, J., ... & Yang, M. H. (2018). Learning dual convolutional neural networks for low-level vision. InProceedings of the IEEE conferenc...
SinGAN: Learning a Generative Model from a Single Natural Image(论文解读二十三) Title:SinGAN: Learning a Generative Model from a Single Natural ImageCode :PyTorchFrom:ICCV2019Note data:2019/11/19Abstract:提出一个可以从单张自然图像学习的非条件性生成式模型SinGAN。目录Abstract1 Introduction2 Re...
LaTeX系统找不到指定文件解决方案 LaTeX编译时经常出现系统找不到指定文件,出现这种情况一般有两种原因,我们逐一debug。(这里用的编译器为WinEdt)原因一:编译系统路径控制台提示“系统找不到指定文件”,这里的找不到文件实质上不是指当前需要编译的.tex文件,而是找不到“TeXify.exe”这个等待运行的程序。在工具栏中找到Options--Excutions Modes... --Tex System...
FastAi入门 简介官方文档翻译:Fastai库使用现代最佳实践简化了快速而准确的神经网络的训练。 它基于对fast.ai进行的深度学习最佳实践的研究,包括对视觉,文本,表格和协作(协作过滤)模型的“开箱即用”支持。 如果您正在寻找源代码,请转到GitHub上的fastai存储库。其他博主介绍:Fastai是一个课程平台,一个讨论社区,也是一个PyTorc的顶层框架。Fastai的理念就是让神经网络...
LaTex科学论文写作 关于科学论文的写作,之前也写过一些零散的总结。对科学论文的写作流程做一个总结。一般情况下,科学类论文包含论文正文,图表等相应的内容。在LaTeX中都需要相应的代码进行插入,参考文献也是通过自己构建数据库然后调用代码进行编译。从期刊网站下载模板以后整体框架我们是不能改变的(有的期刊模板真的很丑),但是由于插入的图表格式等需求,我们需要导入相应的LaTeX包。一般情况下,如下的一些包就够用了,...
用Visio画深度学习模型矢量图 在写深度学习相关论文时,我们常常需要把模型机构画出来。绘图工具也千差万别,我们一般采用PPT和Visio画图工具。画图以后我们尽可能的使得图片美观,且图片最好为矢量图,图片中的文字可以复制,更重要的是分辨率不会下降。下面就说明一下步骤:个人觉得PPT画图比Visio好用一些,所以画图都是在PPT上进行的,然后全选复制。下面主要说明一下Visio中的操作步骤。新建空白绘图,将从PPT(Wor...
LaTex科学论文写作入门 Latex作为大多期刊指定写作工具,并不像Word入门低。但是从美观角度来说LaTeX完胜Word,尤其在公式的编辑上。下面就LaTeX入门遇到的一些问题,写一篇关于LaTeX的文章。1. 初识LaTeXLaTeX, 是一种基于TEX的排版系统,由美国电脑学家莱斯利·兰伯特在20世纪80年代初期开发,利用这种格式,即使用户没有排版和程序设计的知识也可以充分发挥由TEX所提供的强大功能,能...
深入理解卷积与模型大小问题,解决显存不足 目录前言:GPU基础知识卷积神经网络参数参数的显存占用梯度与动量的显存占用输入输出的显存占用节省显存的方法减少卷积层的计算量常用模型 显存/计算复杂度/准确率建议前言:在训练自己的模型时常常出现显存不足等问题,这个时候我们常用的方法就是调参。一般常用的方法有以下几点:模型压缩 网络参数调整,比如减小训练图像大小,降低FC output个数,使...
利用pytorch模型可视化以及参数计算 我们在设计完程序以后希望能对我们的模型进行可视化,pytorch这里似乎没有提供相应的包直接进行调用,参考一些博客,下面把代码贴出来:import torchfrom torch.autograd import Variableimport torch.nn as nnfrom graphviz import Digraph def make_dot(var, params=N...
graphviz.backend.ExecutableNotFound: failed to execute ['dot', '-Tpdf', '-O', 'Digraph.gv']问题解决 在利用graphviz进行模型可视化时,调试出现如下报错:graphviz.backend.ExecutableNotFound: failed to execute ['dot', '-Tpng', '-O', 'test.gv'],make sure the Graphviz executables are on your systems' PATH在Windows中直接利用pip...
python实现图像傅里叶变换 在做超分辨重建任务时,需要对重建图像做出评价,主要是人眼感官上的评价。这就需要我们从空域和频域两个方面对图像进行评价。下面给给出python实现的结果,并给出相应的代码。图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,n...
RuntimeError:one of the variables needed for gradient computation has been modified by an inplace... 调试过程出现如下错误:RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [4, 3, 513, 513]], which is output 0 of ReluBackward1...
图像质量评价指标之 PSNR(峰值信噪比) python实现 PSNR(峰值信噪比)是单图像超分辨率重建中评价图像质量的一项重要指标,下面给出几种基于python语言的实现方法!公式推导:给定一个大小为 m×n 的干净图像 I 和噪声图像 K ,均方误差 (MSE) 定义为: PSNR(dB)就定义为: 方法一:纯公式计算...
python实现图像高斯滤波,以及几种图像格式的差异 利用python实现高斯滤波,并没有什么难度。但在实现过程出现一些有意思的过程!首先利用opencv实现很简单,代码如下:import cv2import datetimeimport matplotlib.pyplot as plt import numpy as npimport PILf = plt.imread('G:\SR\HR_image\img_1_HR.jpg...
Super-resolution:RankSRGAN: Generative Adversarial Networks with Ranker for Image SR(论文简读二十二) Title:RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-ResolutionFrom:ICCV2019Note data:2019/08/18Abstract:针对现有方法中无法合理评估生成图像质量问题,采用感知指标来评估感知质量并提出具有Ranker(RankSRGAN)的超分辨生成对抗...
PyTorch中AdaptiveAvgPool函数解析 自适应池化(AdaptiveAvgPool1d):对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。torch.nn.AdaptiveAvgPool1d(output_size)#output_size:输出尺寸对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H...
Super-resolution:Image Super-Resolution Using Very Deep Residual Channel Attention Networks(论文简读二十一) Title:Image Super-Resolution Using Very Deep Residual Channel Attention NetworksFrom:CVPR2018Note data:2019/08/06Abstract:针对深度网络难以训练的问题提出了新的网络结构Residual channel attention networks(RCAN),其中在残差网络的基础上...
Super-resolution:Camera Lens Super-Resolution(论文解读二十) Title:Camera Lens Super-ResolutionFrom:CVPR2019Note data:2019/07/31Abstract:从相机的角度研究SR,减小分辨率和视野域的内在权衡(焦距),使用更加真实的H-L分辨率的数据集,并可以将CameraSR推广到不同的内容和设备。Code :TensorFlow目录1 Abstra2 Introducti...
史上最全语义分割综述(FCN,UNet,SegNet,Deeplab,ASPP...) 目录语义分割综述摘要语义分割领域研究现状灰度分割条件随机场深度学习方法数据集与评价指标常用数据集评价指标模型介绍语义分割综述摘要语义分割(全像素语义分割)作为经典的计算机视觉问题(图像分类,物体识别检测,语义分割)。其涉及将一些原始数据(例如:平面图像)作为输入并将它们转换为具有突出显示的感兴趣区域的掩膜,其中图像中的每个像素根据其所属的对象被分...
CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive...(论文解读十九) Title:CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot LearningFrom:CVPR2019Note data:2019/07/17Abstract:引入一种CANet,一个类不可知的分割网络,可以对新类进行几次分割,只有少量带注释的图像。...
Semantic Segmentation---EncNet:Context Encoding for Semantic Segmentation(论文解读十八) Title:Context Encoding for Semantic SegmentatioFrom:CVPR2018Note data:2019/07/11Abstract:引入上下文编码模块(Context Encoding Module),引入全局上下文信息(global contextual information),用于捕获场景的上下文语义并选择性的突出与类别相关的特征图。...
Semantic Segmentation---Adaptive Pyramid Context Network for Semantic Segmentation(论文解读十七) Title:Adaptive Pyramid Context Network for Semantic SegmentationFrom:CVPR2019Note data:2019/06/30Abstract:提出Adaptive Context模块,在估计局部区域权重时,利用局部和全局上下文特征表示的GLA特性Code :暂未开源目录1 Abstract2 Intr...
Ubuntu16.04深度学习环境配置(配置清华镜像) 在配置过程中出现的坑,我也会提出来,以便大家以后避免踩坑!一 、硬件环境显卡:NVIDIA RTX 2080ti *4内存:32G*4CPU:2630V4* 2电源:2000 W硬盘: 1T+ 4T*2二、软件环境Linux系统:Ubuntu16.04CUDA:10.1CUDNN: 7.5一些说明:因为服务器预装系统,所以在安装系统这一步没有步骤说明,可以...
Semantic Segmentation---Auto-DeepLab: Hierarchical Neural Architecture Search for Semant ...(论文解读十六) Title:Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image SegmentationFrom:CVPR2019Note data:2019/06/18Abstract:提出一种NAS方法应用于图像语义分割,并取得了SOTA的效果。Code :pytorch传送门:NAS综述目录...
神经网络架构搜索(NAS)综述 在阅读近期的CVPR2019时,看到一篇比较亮眼的图像分割论文。来自斯坦福Li Fei-Fei组(Auto-deeplab),关于利用NAS策略进行图像分割,达到了较优的水平,仅仅比deeplabv3+少1.3%,且只用了3张P100 GPU。收集一些关于NAS的资料,做一个神经网络架构搜索综述,在借鉴部分给出相应的链接以及引用,侵删。神经网络结构搜索(Neural Architecture...
VS2017报错找不到 Windows SDK 版本10.0.14393.0以及无法打开pdb文件解决方案 因为刚下载新的visual studio2017所以很多环境没有配置,在运行一个demo是出现两个bug,下面一一debug。无法打开pdb文件:解决方法步骤1.勾选工具->选项->调试->常规->启动源服务器支持; 启动源服务器支持下面的三栏不用勾选;确定后弹出对话框选 是;步骤2.勾选工具->选项-&g...
Semantic Segmentation---Understand Convolution for Semantic Segmentation(论文解读十五) Title:Understand Convolution for Semantic SegmentationFrom:IEEE Winter Conference on Applications of Computer Vision (WACV 2018)Note data:2019/06/16Abstract:介绍两种操作卷积相关运算(密集上采样卷积,混合空洞卷积)以提高分割效果Co...
DRN:Dilated Residual Networks(论文解读十四) Title:Dilated Residual NetworksFrom:CVPR2017Note data:2019/06/12Abstract:提出一种有利于分类任务的扩张残差网络DRN。Code :pytorch目录DRN论文解读1 Abstra2 Introduction3 MethodDegridding添加图层移除残差连接5 Experim...
Semantic Segmentation---DFN:Learning a Discriminative Feature Network for Semantic ...(论文解读十三) Title:Learning a Discriminative Feature Network for Semantic SegmentationFrom:CVPR2018Note data:2019/06/10Abstract:为解决类内不一致和类内模糊两个语义分割的挑战,提出了一种判别特征网络DFN,包含了平滑网络与边界网络。Code :pytorch目录DFN论文解读...
轻量化卷积神经网络(SqueezeNet,MobileNet,ShuffleNet,Xception) 目录摘要SqueezeNet (AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size)MobileNetShuffleNetXception总结摘要在最近阅读的一些论文中常常出现MobileNet,Xception等模块,下面将对几种轻量化卷积神经网络进行介绍,并给出论文...
Semantic Segmentation---DeepLabv3+ Encoder-Decoder with Atrous Separable Convolution for ...(论文解读十二) Title:Encoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationFrom:CVPR2018Note data:2019/06/09Abstract:以DeepLabv3做encoder架构,decoder采用一个简单却有效的模块。并探索了改进的Xception和深度分离卷积在模型...
Semantic Segmentation---DenseASPP for Semantic Segmentation in Street Scenes(论文解读十一) Title:DenseASPP for Semantic Segmentation in Street ScenesFrom:CVPR2018Note data:2019/06/05Abstract:ASPP基础上提出密集连接扩张空间金字塔池Code :pytorch目录DenseASPP论文解读1 Abstract2 Introduction3Related w...
Semantic Segmentation---DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation(论文解读十) Title:DFANet:Deep Feature Aggregation for Real-Time Semantic SegmentationNote data:2019/06/05Abstract:提出的网络从单个轻量级骨干网开始,分别通过子网和子站级联聚合判别特征。基于多尺度特征传播,DFANet大大减少了参数的数量,但仍然获得了足够的感受野,提高了模型学习能力,在速度和分割性能之间取...
Semantic Segmentation---DANet:Dual Attention Network for Scene Segmentation(论文解读九) Title:DANet:Dual Attention Network for Scene SegmentationNote data:2019/06/02Abstract:该论文提出新型的场景分割网络DANet,利用自注意力机制进行丰富语义信息的捕获,在带有空洞卷积的FCN架构的尾部添加两个并行的注意力模块:位置注意力模块和通道注意力模块。Code :pytorch目录DANet论文...
Faster-RCNN 论文复现(Tensorflow) Faster-RCNN(TensorFlow代码)1. 环境配置硬件说明:显卡:1080ti(之后会有用)CUDA:cuda9.0,CUDNN:7.0Ubuntu:16.0cat /usr/local/cuda/version.txt (cuda 版本查看指令)cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MA...
Super-Resolution 论文调研 目录超分辨率综述论文一Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network(ECCV2018)1. Abstract2. Architecture3. Experiment4.Conclusion论文二:Recurrent Back-Projection Ne...
Fine-grained Classification 论文调研 目录细粒度分类综述论文一Learning to Navigate for Fine-grained Classification (ECCV2018 from PKU)1. Abstract2. Architecture3. Experiment4.conclusion论文二:Multi-Attention Multi-Class Constraint for Fin...
Object Detection---Fast-RCNN (论文解读八) Title:Fast-RCNNNote data:2019/05/21Abstract:作为计算机视觉三大问题之一,检测问题是相对较为复杂的任务。不仅需要知道是什么,还需要知道在哪里,分别是什么的问题,这正是我们目标检测需要做的东西。Code:pytorchR-CNN论文解读目录Fast-RCNN论文解读1 Abstract2 Introduction3 Archi...
Object Detection---R-CNN / fast-RCNN / faster-RCNN (论文解读七) R-CNN系列作为目标检测领域的大师之作,对了解目标检测领域有着非常重要的意义。Title:R-CNN:Rice feature hierarchies for accurate object detection and semantic segmentation fast-RCNN Faster-RCNN:Towards Real-Time Obje...
读取保存在txt文件中的loss记录,并绘图 同时利用三个网络结构进行训练时,训练结束将训练产生的loss保存在三个txt文件中,文件内容如下: 因为txt文件中包含字符所以需要将字符剔除,在进行绘图!下面需要字符剔除后再将loss进行绘图,并将三个网络产生的loss进行直观的比较。代码如下:import matplotlib.pyplot as ...
Object Detection---FPN:Feature Pyramid Networks for Object Detection (论文解读六) Title:FPN:Feature Pyramid Networks for Object DetectionNote data:2019/05/18Abstract:利用特征金字塔对不同层次的特征进行尺度变化后,再进行信息融合,从而可以提取到比较低层的信息,也就是相对顶层特征来说更加详细的信息。在R-CNN的基础上FPN达到了最优的结果,在COCO2016中一举夺魁,并且值得注意的是在一张G...
Object Detection---PoolNet:A Simple Pooling-Based Design for Real-Time Salient Object Dete...(论文解读五) Title:PoolNet:A Simple Pooling-Based Design for Real-Time Salient Object DetectionNote data:2019/05/16Abstract:基于U型结构构建了全局引导模块(GGM )与特征聚合模块(FAM),使得粗糙的语义信息与自上而下的路径中的精细特征融合,在处理300*400图像时可以超过30FPS的速度运行...
深度学习模型大小由网络决定 在训练完一个网络保存模型以后,我常常会将最优的模型保存,放在文件夹中以备用到!但会想模型的大小是由什么决定的呢?其实我们的模型在我们确定网络结构以后就已经将模型的大小确定了。下面将具体介绍一下:对于上图我们可以逐步计算feature map大小计算 输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的feature map大小: H1=...
ValueError:Traceback(most ...)数据集中图片 not exists 在复现CVPR2019一篇论文中时,根据README配置参数环境等,但一直出现以下bug利用print大法定位到bug位置如下: 打印出的图片形状都是空,没有图片读进去,所以判断是路径出错,再回去看README文件,提到的train.sh文件中配置train.py,如下因为文件是在./data/DUTS/DUTS-TR子文件夹下读取,所以train....
服务器(Linux)上安装VScode 因为之前一直使用的是VScode编译器,所以在服务器中配置一个VScode,参考博客资源:华为云服务器Centos7系统步骤:在linux系统中安装VSCode(Visual Studio Code)1.从官网下载压缩包访问Visual Studio Code官网https://code.visualstudio.com/docs?dv=linux64wgeth...
Semantic Segmentation---GCN:Large Kernel Matters---Improve Semantic Segmantic by Global ...(论文解读四) Title:GCN:Large Kernel Matters---Improve Semantic Segmantic by Global Convolutional NetworkNote data:2019/05/13Abstract:GCN提出了Global Convolutional Network(GCN),同时给出了一个基于残差(residual)的boundary refin...
激活服务器虚拟环境时出现bad interpreter:No such file or directory,将cuda9.0升级cuda10.1步骤 在使用华为云服务器时,将cuda9.0升级为cuda10.1过程命令删除了某文件,导致anaconda无法使用,激活环境出现如下报错:激活python也是python2,其他环境全崩了,搜索很多,最终重装anaconda解决问题!同时升级cuda9.0至cuda10.1步骤如下:云服务器配置:Tesla P100Centos 7预装cuda 9.0升级cuda10.1...
关于GoogleNet中1*1卷积与多尺度同时卷积聚合的问题 在深度神经网络中我们常常要解决随着网络的加深带来的一些梯度消失,模型退化,还有随着网络加深参数指数级增长等问题。在Inception结构中使用了1*1卷积进行降维,同时在多尺度上同时进行卷积在聚合,这么做目的是:1. 在相同的尺寸上感受野中叠加更多的卷积,能够提取更加丰富的特征NIN(network in network 2013)。在这里说一些NIN网络中的一些内容:采用 mlpcon...
Densely Connected Convolutional Networks(论文解读三) 目录DenseNet:论文解读1.Abstract2. Related work2.1 通过级联来加深网络2.2 通过 shortcut 连接来加深网络2.3 通过加宽网络来使网络更深2.4 提高特征重用2.5 其他一些工作:3. DenseNet3.1 Composite functio ...
找出数据集中出现样本个数最多与最少的10个类别 前面我们通过可视化手段看到每个类别中训练集图片数量是不均匀的,我们需要将数目最多和最少的10个类别找出来,进行相应的处理!代码实现如下:import sys, os, multiprocessing, urllib3, csvfrom PIL import Imagefrom io import BytesIOfrom tqdm import tqdmimport jsonfro...
json文件中数据类别个数统计与类别信息可视化 将json文件保存的数据信息利用URL下载数据以后,希望将统计出数据集中每一类图片个数,且进行可视化,看数据分布是否均匀,然后在进行相应的操作。数据还是kaggle比赛中提供的数据集,json文件内容如下:python实现上述要求:#导入相应的包,有些不一定用到import sys, os, multiprocessing, urllib3, csvfrom PIL impor...
Batch Norm、Layer Norm、Instance Norm、Group Norm、Switchable Norm总结 目录1.综述1. BN2. LN3. IN4. GN5. SN2. 结论1.综述在入门深度学习时就深度学习中的一些概念做了一些介绍,但随着学习的不断深入,一些网络优化的技巧越来越多,才发现之前的理解的不够深入。在这里有对BN的理解,对出现的几种归一化进行一些个人理解的介绍,首先看一个直观图归一化层,目前主要有这几个方法,Batch Normal...
利用URL下载json文件中包含的数据集 第一次参加kaggle竞赛,因为数据集很大,所以数据集是放在json文件中的。形式为:我们需要读取json文件并利用url下载数据集,代码如下:import sys, os, multiprocessing, urllib3, csvfrom PIL import Imagefrom io import BytesIOfrom tqdm import tqdmimport...
Windows下传输本地文件到云服务器出现预置密码错误 在使用winSCP上传本地文件到华为云服务器时,出现了需要预置密码,且输入密码总出现拒绝访问。这种结果一般是因为登录是密码输入错误导致。我是直接复制粘贴的,但还是出现这种错误,可能解码编码的时候出现错误。下面主要详细说明一下上传步骤:方法/步骤:1、启动WinSCP2、打开WinSCP;输入linux服务器信息3、点击登录4、登录成功5、找到并选中你要上传或下载的文件...
Semantic Segmentation---FCN论文复现全过程 经过一段时间的论文阅读开始尝试复现一些经典论文,最经典的莫过于FCN网络。一块1080ti经过27h训练,最终训练结果如下: 测试集上的表现(image,groundtruth,out)可以看出尽管各项评价指标相对与论文来说相差无几,但可视化出来并没有论文中表现的那么好,且还出现类别预测错误的现象。具体原因我还未知,尝试用这个框架训SegNet以后...
关于pyecharts安装出现的问题(不能导入Bar,Grid等问题) 假期无聊把微信好友的头像还有一些其他个人信息想着爬出来,在安装pyecharts包时安装成功了但是导入不了Bar,还有Grid等一些包,查了很多博客,也解决了Bar包的问题,但终究是治标不治本,所以就想看看到底是因为什么安装以后不能使用。下载完pyecharts以后导入Bar,出现没有这个函数的报错。然后根据其他博主的经验,我下载了其他版本的pyecharts,尝试导入Bar。这时没有出现报错...
pytorch出现Runtimeerror:out or memory... 在使用SegNet网络训练Pascal VOC2012数据集时,出现超出内存的报错,原因超出显卡内存,需要进行相应的处理。首先我是如何解决这种问题的,我们在load数据时一般进行数据增强,resize图片的大小,这样我们如果出现超出内存的情况不妨将图片的size改小一点,毕竟这在程序运行初始最开始占用内存,所以可以尝试看是否解决你的问题。第二,来源于博客(侵删)看到这个提示,表示您的G...
python报错TypeError: expected str, bytes or os.PathLike object, not NoneType 出现这种错误的原因主要发生在打开文件时,文件路径错误导致,基本都会出现如下提示: File "D:\Anaconda\envs\pytorch\libtpath.py", line 76, in join path = os.fspath(path)定位到我的代码中问题代码是:有查了一些资料,有博主说路径没有添加到变量中,尝试以后没能解决我的问题,分析原因主要是因为,...
为什么正则化可以防止过拟合? 以下理解来源于吴恩达老师深度学习视频为什么正则化有利于预防过拟合呢?为什么它可以减少方差问题?我们通过两个例子来直观体会一下。左图是高偏差,右图是高方差,中间是Just Right,这几张图我们在前面课程中看到过。直观上理解就是如果正则化参数设置得足够大,权重矩阵被设置为接近于0的值,直观理解就是把多隐藏单元的权重设为0,于是基本上消除了这些隐藏单元的许多影响。如果是这种情况,...
为什么在语义分割任务中都将label转化为单通道? 看众多语义分割经典算法的复现中常常都在训练之前将label的RGB图转化为单通道的灰度图,尤其深度学习的出现以及算力的不断提升为什么还需要灰度图进行训练呢?查找相关资料有以下几点原因:梯度信息对于识别物体来说很重要。所以我们可以把灰度图像看作图像的强度(Intensity),来求一些梯度特征。比较常用的有 HOG,LBP,SIFT等等。如下图为行人检测中的hog模型。通过hog来检测部件,...
Fully Convolutional Networks for Semantic Segmentation---FCN论文复现(基于Pytorch) 在论文解读时并没有对FCN论文进行详细的解读,只是在介绍语义分割综述的时候介绍到这篇开天辟地的神作,试着去复现论文的精髓。从GitHub上down了几个源码下来,可能是能力有限不能完全的运行,主要面对的数据集不同,数据读取方式的不同导致了很多bug,最后经过调试这个源码,程序可以正常运行,能运行的原因主要是作者把VOC2012数据中的十几张图一起放在源码中,这样就避免了读取数据路径以及读取方式错误...
Ubuntu 命令集合 之前一直通过Windows进行代码的编译,慢慢开始接触大规模代码,将代码放到服务器上进行训练,此时就需要了解Linux Ubuntu的先关指令。anaconda指令集合1.激活进入名为environment_name的环境(windows)source activate environment_name2.退出环境source deactivate environment_name...
卷积,反卷积,空洞卷积 卷积神经网络中卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对局部相关性的一种抽取。但在深度卷积网络中,我们使用多次池化,下采样在增大感受野的同时使得信号的分辨率变小。且在卷积池化的过程中,尺寸会快速变小,我们常常会使用填充手段来解决这个问题...
Semantic Segmentation---DeepLab V1:Semantic Image Segmentation with Deep Convolutional Nets..(论文解读二) Title:DeepLab V1: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs Data:2019/04/17 Abstract:DeepLab是结合了深度卷积神经网络(DCNNs)和概率图模型(DenseCRFs)的方法。在实验中...
(语义分割数据增强)data与label同时随机裁剪 在语义分割任务中,由于标注难度比较大,数据集有限的情况下,我们常常使用数据增强技术对已有的数据进行出来。尤其在语义分割任务中需要对图片还有label同时进行裁剪。下面就简单介绍一下如何实现对数据和label的同时裁剪:import osimport torchimport numpy as npfrom torch.autograd import Variablefrom torch...
深度学习笔记(十六)---几种数据形式的灵活读取 数据的读取是我们进行工作的第一步,在我们拿到各种各样的数据时,首先要知道数据的格式以及label,对应的种类,数量,下面就先介绍常用数据的读取方式。从数据角度分两种,一是ndarray格式的纯数值数据的读写,二是对象(数据结构)如dict的文件存取。导入将要使用的函数包import cv2from torchvision.datasets import ImageFolderimpo...
Open cv报错error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize' 在编译一段代码时,一直报错,开始怀疑是图片尺寸的问题,后来用matplotlib读取,完全没有问题。排除这个原因:error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize'查询相应的博客时发现原因大多如下:读取图片的文件夹中包含中文,横杠字符-(最好使用下划线) 读取路径不正确或者读取文件路径过长,复...