找出数据集中出现样本个数最多与最少的10个类别

前面我们通过可视化手段看到每个类别中训练集图片数量是不均匀的,我们需要将数目最多和最少的10个类别找出来,进行相应的处理!代码实现如下:

import sys, os, multiprocessing, urllib3, csv
from PIL import Image
from io import BytesIO
from tqdm  import tqdm
import json
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
from numpy import *
import pylab
import heapq

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

key_class_list = []
count = {}
j = json.load(open('train.json'))
images = j['images']
for item in images:
    label = item['class']
       
    key_class_list.append((label))

print(type(key_class_list),'\n',len(key_class_list))    #打印出来数据信息(类型,长度)


#统计列表中最多最少的10数
print(Counter(key_class_list).most_common(10))
print(Counter(key_class_list).most_common()[:-11:-1])

打印结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值