leetcode 343 Integer Break

题目:
给定一个数字n,可以将其分割成多个数字的和,若要让这些数字的乘机最大,求分割的方法(至少要分出两个数)。算法返回这个最大的乘机。

代码如下:(递归版)

#include<bits/stdc++.h>
using namespace std;
int n;
int breakinteger(int n)
{
	int maxn = -1;
	if(n == 1) return 1;
	for(int i = 1;i <= n - 1;i++)	//将n分成i和n - i两部分 
		maxn = max(maxn,max(i * (n - i),i * breakinteger(n - i)));
	return maxn;
} 
int main()
{
	cin >> n;
	cout << breakinteger(n) << endl;
	return 0;
}

本体要求将数字n分割,刚看到题目,我第一个想法就是用递归去完成。这是因为如果我们要分割的数为n,那么我们一开始一共有n - 1种法案,分别是先分出1,分出2…分出n - 1。然后再从分出的子问题种再去分割,下面的图就是基本思路:
在这里插入图片描述
这种思路是用递归去完成的,算法复杂度为o(2^n),这样做明显太复杂了,只要n一大,肯定是通不过的。那么如何修改才能降低算法复杂度呢?
我们可以看到图上有两处要计算分割n - 2这样的问题,其实还不知如此,这些子问题,我们在递归的过程中不知道重复的计算了多少次。所以我们就在想要是能把这些重复的子问题的就算结果都保存下来,那么下次再要用的时候就不用再计算了。所以这里可以用到记忆化搜索,这和动态规划的基本思路是一致的。那么什么时候要用到动态规划呢?(如下图)

代码如下:(动态规划版)

#include<bits/stdc++.h>
using namespace std;
#define MAX 100005
int n,dp[MAX];
int main()
{
	cin >> n;
	memset(dp,-1,sizeof(dp));
	dp[1] = 1;
	for(int i = 2;i <= n;i++)
		for(int j = 1;j < i;j++)	//把数字i分出j和i - j 
			dp[i] = max(dp[i],max(j * (i - j),j * dp[i - j]));
	cout << dp[n] << endl;
	return 0;
}

dp[i]代表拆数字i时乘积最大值。其余想法和递归思想一样,动态规划只是把中间的子问题结果保存了下来,所以算法复杂度只有o(n^2)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值