题目:
给定一个数字n,可以将其分割成多个数字的和,若要让这些数字的乘机最大,求分割的方法(至少要分出两个数)。算法返回这个最大的乘机。
代码如下:(递归版)
#include<bits/stdc++.h>
using namespace std;
int n;
int breakinteger(int n)
{
int maxn = -1;
if(n == 1) return 1;
for(int i = 1;i <= n - 1;i++) //将n分成i和n - i两部分
maxn = max(maxn,max(i * (n - i),i * breakinteger(n - i)));
return maxn;
}
int main()
{
cin >> n;
cout << breakinteger(n) << endl;
return 0;
}
本体要求将数字n分割,刚看到题目,我第一个想法就是用递归去完成。这是因为如果我们要分割的数为n,那么我们一开始一共有n - 1种法案,分别是先分出1,分出2…分出n - 1。然后再从分出的子问题种再去分割,下面的图就是基本思路:
这种思路是用递归去完成的,算法复杂度为o(2^n),这样做明显太复杂了,只要n一大,肯定是通不过的。那么如何修改才能降低算法复杂度呢?
我们可以看到图上有两处要计算分割n - 2这样的问题,其实还不知如此,这些子问题,我们在递归的过程中不知道重复的计算了多少次。所以我们就在想要是能把这些重复的子问题的就算结果都保存下来,那么下次再要用的时候就不用再计算了。所以这里可以用到记忆化搜索,这和动态规划的基本思路是一致的。那么什么时候要用到动态规划呢?(如下图)
代码如下:(动态规划版)
#include<bits/stdc++.h>
using namespace std;
#define MAX 100005
int n,dp[MAX];
int main()
{
cin >> n;
memset(dp,-1,sizeof(dp));
dp[1] = 1;
for(int i = 2;i <= n;i++)
for(int j = 1;j < i;j++) //把数字i分出j和i - j
dp[i] = max(dp[i],max(j * (i - j),j * dp[i - j]));
cout << dp[n] << endl;
return 0;
}
dp[i]代表拆数字i时乘积最大值。其余想法和递归思想一样,动态规划只是把中间的子问题结果保存了下来,所以算法复杂度只有o(n^2)。