343. Integer Break [LeetCode]

343Integer Break

 

Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.

For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).

Note: You may assume that n is not less than 2 and not larger than 58.

      给定一个正整数,可以将其分割成多个数字的和,若要让这些数字的乘积最大,求分割的方法(至少要分成两个数)。算法返回这个最大的乘积。

    可以采用递归的思路,分割n可以拆分为两部分 i 和 n-i分割后获得的最大乘积,递归下去,终止条件是n==1 返回1。

 


//
//
/// version 1:  raw recursion
static int max3(int a, int b, int c) {
    return fmax(a, fmax(b, c));
}

static int intbreak(int n) {
    if (n <= 2) return 1;
    int res = 0;
    for (int i = 1; i < n; i++)
        res = max3(res, i * (n - i), i * intbreak(n - i));
    return res;
}

int integerBreak(int n) {
    return intbreak(n);
}


//
//
/// version 2:  speed recursion
static int intbreak(int n, int *f){
    if (n <= 2) return 1;
    if (f[n]) return f[n];
    for (int i = 1; i < n; i++)
        f[n] = max3(f[n], i * (n - i), i * intbreak(n - i, f));
    return f[n];
}

int integerBreak(int n) {
    int *f = (int *)calloc(n + 1, sizeof(int));
    int res = intbreak(n, f);
    free(f);
    return res;
}

//
//
/// version 3: iteration
int integerBreak(int n) {
    int *f = (int *)calloc(n + 1, sizeof(int));
    f[1] = 1;
    f[2] = 1;
    int res = -1;
    for (int i = 3; i <= n; i++) {
        for (int j = 1; j < (i / 2) + 1; j++) {
            res = max3(res, j * (i - j), j * f[i-j]);
        }
        f[i] = res;
    }
    res = f[n];
    free(f);
    return res;
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luuyiran

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值