神经网络之前向传播

神经网络之前向传播

神经网络通过输入多个“单一”的神经元x1,x2,x3,通过在隐含层的计算,输出你的期望(输出值)hw,b(x),当你的输入和输出是一样的时候,成为自编码模型(Auto-Encoder),而当你输入和输出是不一致的时候,也就是我们常说的人工神经网络。
在这里插入图片描述
注释:+1称为偏置节点,又称为截距(如同直线上的b);
在这里插入图片描述
其中函数f:()称为激活函数,常用的激活函数为sigmoid函数和tanh函数在这里插入图片描述在这里插入图片描述

神经网络的计算

在这里插入图片描述

我们用 x l x_{l} xl表示网络的层数,本例中 x l x_{l} xl=3 ,我们将第 l l l 层记为 L l L_{l} Ll,于是 L 1 L_{1} L1 是输入层,输出层是 L n l L_{nl} Lnl 。本例神经网络有参数 ( W , b ) (W,b) (W,b) = ( W ( 1 ) (W^{(1)} (W(1), b ( 1 ) b^{(1)} b(1), W ( 2 ) W^{(2)} W(2), b ( 2 ) ) b^{(2)}) b(2)),其中 W i j ( l ) W^{(l)}_{ij} Wij(l) (下面的式子中用到)是第 l l l 层第 j j j 单元与第 l + 1 l+1 l+1 层第 i i i单元之间的联接参数(其实就是连接线上的权重,注意标号顺序), b i ( l ) b^{(l)}_i bi(l)是第 l + 1 l+1 l+1 层第 i i i 单元的偏置项。因此在本例中, W ( 1 ) ∈ ℜ 3 × 3 W^{(1)} \in \Re^{3\times 3} W(1)3×3 W ( 2 ) ∈ ℜ 1 × 3 W^{(2)} \in \Re^{1\times 3} W(2)1×3 。注意,没有其他单元连向偏置单元(即偏置单元没有输入),因为它们总是输出 + 1 +1 +1。同时,我们用 s l s_l sl 表示第 l l l 层的节点数(偏置单元不计在内)。

我们用 a i ( l ) a^{(l)}_i ai(l)表示第 l l l 层第 i i i 单元的激活值(输出值)。当 l = 1 l=1 l=1 时, a i ( 1 ) = x i a^{(1)}_i = x_i ai(1)=xi ,也就是第 i i i 个输入值(输入值的第 i i i 个特征)。对于给定参数集合 W , b W,b W,b ,我们的神经网络就可以按照函数 h W , b ( x ) h_{W,b}(x) hW,b(x) 来计算输出结果。本例神经网络的计算步骤如下:
在这里插入图片描述
我们用 z i ( l ) z^{(l)}_i zi(l) 表示第 l l l 层第 i i i 单元输入加权和(包括偏置单元),比如, z i ( 2 ) = ∑ j = 1 n W i j ( 1 ) x j + b i ( 1 ) , 则 a i ( l ) = f ( z i ( l ) ) z_i^{(2)} = \sum_{j=1}^n W^{(1)}_{ij} x_j + b^{(1)}_i ,则 \textstyle a^{(l)}_i = f(z^{(l)}_i) zi(2)=j=1nWij(1)xj+bi(1)ai(l)=f(zi(l))

这样我们就可以得到一种更简洁的表示法。这里我们将激活函数 f ( ⋅ ) f(\cdot) f() 扩展为用向量(分量的形式)来表示,即 f ( [ z 1 , z 2 , z 3 ] ) = [ f ( z 1 ) , f ( z 2 ) , f ( z 3 ) ] f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)] f([z1,z2,z3])=[f(z1),f(z2),f(z3)] ,那么,上面的等式可以更简洁地表示为:

z ( 2 ) z^{(2)} z(2)= W ( 1 ) x + b ( 1 ) W^{(1)} x + b^{(1)} W(1)x+b(1)
a ( 2 ) a^{(2)} a(2)= f ( z ( 2 ) ) f(z^{(2)}) f(z(2))
z ( 3 ) z^{(3)} z(3)= W ( 2 ) a ( 2 ) + b ( 2 ) W^{(2)} a^{(2)} + b^{(2)} W(2)a(2)+b(2)
h W , b ( x ) h_{W,b}(x) hW,b(x)= a ( 3 ) = f ( z ( 3 ) ) a^{(3)} = f(z^{(3)}) a(3)=f(z(3))

我们将上面的计算步骤叫作前向传播。回想一下,之前我们用 a ( 1 ) = x a^{(1)} = x a(1)=x 表示输入层的激活值,那么给定第 l l l 层的激活值 a ( l ) a^{(l)} a(l)后,第 l + 1 l+1 l+1 层的激活值 a ( l + 1 ) a^{(l+1)} a(l+1) 就可以按照下面步骤计算得到:

z ( l + 1 ) z^{(l+1)} z(l+1)= W ( l ) a ( l ) + b ( l ) W^{(l)} a^{(l)} + b^{(l)} W(l)a(l)+b(l)
a ( l + 1 ) a^{(l+1)} a(l+1)= f ( z ( l + 1 ) ) f(z^{(l+1)}) f(z(l+1))

将参数矩阵化,使用矩阵-向量运算方式,我们就可以利用线性代数的优势对神经网络进行快速求解。

此文主要根据下面两篇文章学习的一些心得:http://ufldl.stanford.edu/wiki/index.php/神经网络
https://www.2cto.com/net/201708/666276.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值