- 博客(5)
- 资源 (5)
- 收藏
- 关注
原创 神经网络的简单实现、拟合抛物线
一、需求详解大致看了框架Keras的神经网络的实现(没有看源码,只是根据调用的结构),也照葫芦画瓢的写一个神经网络的实现我们大概可以先看下实现效果如下:这是一条(红色)的一条抛物线,蓝色部分是根据自己实现的神经网络拟合的一条抛物线。二、神经网络实现说明:1、Keras中有一个Sequential类,相当于一个序列的类,然后把需要计算的类都放到序列里2、正向计算,就是序列从头...
2019-06-04 00:20:50 1086
原创 机器学习之神经网络,反向传播
一、反向传播的概念在前面的一篇中,说到了正向传播,其实反向传播就是正向传播的逆运算,通过最终结果反向进行求导,并更新梯度值(wb的值)二、反向传播的过程说起来感觉也很简单,还需要复合函数求导的数学知识:正向传播的公式:最后一层L层的输出值:最终的损失函数:最终求得w,b的梯度,对W和b求偏导有一个很有意思的就是,对于sigmoid函数,他的导数就是...
2019-05-10 00:37:47 340
原创 机器学习之神经网络、前向传播
一、神经网络概述神经网络,简称NN,我们可以将一个最简单的神经网络表示如下图所示:1、A部分是把样本,通过如下的线性处理2、再通过B部分一个激活函数,进行数据处理得到输出结果我们将神经网络分为三层,一个输入层(inputs layer)一个输出层(output layer)中间加入多层的隐藏层(hidden layer),以增加模型的泛化能力,如下图所示:...
2019-03-19 06:07:27 611
原创 机器学习之线性回归的实现
一、线性回归实现的说明在上一次线性回归的介绍中,我们看到线性回归可以用解方程或者梯度下降的方法解决,下面我们将实现自己的代码去实现求解过程。下面的求解的例子,都是按比较简单的二维坐标系提供了四个样本点,(x,y):(1,2),(3,3),(5,7),(6,8)求解最能拟合回归的直线二、实现解方程我们可以按照矩阵求解的方法进行求解,公式:将例子中的变量值代入到方程中,我们利用现有...
2019-03-15 21:27:14 363
原创 机器学习之线性回归
一. 线性回归的概念线性回归(Linear Regression)是一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。二. 线性回归的几何图示在二维空间中,线性回归就是找一条线,能拟合样本点,如下图所示三.线性回归的模型函数和损失函数设有m个样本点x,每个样本点都有n维特征,且每个样本都对应一...
2019-03-10 00:38:01 390
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人