机器学习
L轻描淡写L
这个作者很懒,什么都没留下…
展开
-
机器学习算法系列之朴素贝叶斯
本系列机器学习的文章打算从机器学习算法的一些理论知识、python实现该算法和调一些该算法的相应包来实现。一、朴素贝叶斯法的学习与分类1、朴素贝叶斯基本方法先补充一些基本概念,如下:条件概率(又称作后验概率):就是事件A在另外一个事件B已经发生条件下发生的概率。表示味:P(A|B),读作“在B条件下A发生的概率” 联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为:P(A∩B)或P(A,B) 边缘概率(又称先验概率):是指某个事件发生的概率。边缘概率是这样得到的:在联合概率中原创 2020-06-02 18:04:38 · 390 阅读 · 0 评论 -
机器学习算法系列之决策树
本系列机器学习的文章打算从机器学习算法的一些理论知识、python实现该算法和调一些该算法的相应包来实现。一、决策树原理1、决策树的模型与学习决策树简介:决策树是一种典型的分类方法。首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策树对新数据进行分析。本质上决策树是通过一系列的规则对数据进行分类的过程。决策树的优点:1、推理过程容易理解,决策过程可以表示为if-then形式;2、推理过程完全依赖于属性变量的取值特点;3、可自动忽略目标变量没有贡献的属性变量,也为判断属性变量原创 2020-05-18 16:49:49 · 796 阅读 · 0 评论 -
机器学习算法系列之K近邻算法
本系列机器学习的文章打算从机器学习算法的一些理论知识、python实现该算法和调一些该算法的相应包来实现。K近邻算法一、K近邻算法原理k近邻算法k近邻法(k-nearest neighbor)是一种基于回归和分类的算法。k近邻法的输入为实例的特征向量,对应于特征空间中的点;输出为实例的类别,可以取多类。通俗解释可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练原创 2020-05-11 23:05:29 · 2778 阅读 · 0 评论 -
机器学习算法系列之逻辑回归
本系列机器学习的文章打算从机器学习算法的一些理论知识、python实现该算法和调一些该算法的相应包来实现。逻辑回归一、理论知识 什么是逻辑回归(Logistics Regression) 逻辑回归是用来做分类算法的,从上一节的线性回归中我们知道其一般形式为Y=aX+b,且Y的取值范围为[-∞, +∞],有这么多的取值导致无法进行分类,所以这里采用把Y的结果带入一个非线...原创 2020-05-08 22:01:58 · 565 阅读 · 0 评论 -
机器学习算法系列之线性回归
本系列机器学习的文章打算从机器学习算法的一些理论知识、python实现该算法和调一些该算法的相应包来实现。线性回归一、理论知识1、什么是线性回归线性:两个变量之间的关系是一次函数的关系的----图像是直线,叫做线性非线性:两个变量之间不是一次函数关系的----图像不是直线,叫做非线性回归:人们在测量事物的时候因为客观条件有限,求得得都是测量值,而不是事物得真实值,为了能够得...原创 2020-05-05 20:45:43 · 655 阅读 · 0 评论 -
机器学习——线性建模最小二乘法
1-1 线性建模首先,通过一个实际的例子来考虑机器学习最直接的学习问题——线性建模:在属性与响应之间学习的线性关系。其基本形式为: 一般用向量形式写成:其中W=(w1;w2;w3;.....wd) ,W和b学得之后,模型就得以确定。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性...原创 2019-07-10 14:01:01 · 1222 阅读 · 0 评论