错排:就是将n个项重新排列,并且是原项需更改位置。也就是原排列的的一个排序。
设n个元素,排列为D(n)。
第一步:先将第n个元素排在第k个位置,则有(n-1)种可能。
第二步:
再排第k个位置的元素。
①:若第k个位置得到元素排在第n个位置,则剩余
(n-2)个元素有D(n-2)种可能排序。
②:若第k个位置不排在第n个位置,则剩余的
(n-1)个元素有D(n-1)种可能排序。
故n个元素的排序种类有:
(n-1)*[D(n-1)+D(n-2)];
举例:D(1)=0;
D(2)=1;
例题:杭电oj2048;
Problem Description
HDU 2006'10 ACM contest的颁奖晚会隆重开始了!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:
首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!
我的神、上帝以及老天爷呀,怎么会这样呢?
题意:n个人抽奖,若有人抽到自己名字则中奖,反之未中奖。一次抽奖时,恰巧没人中奖的概率多少?
不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?
不会算?难道你也想以悲剧结尾?!
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。
Output
对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。
Sample Input
12
Sample Output
50.00%
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=100;
long long a[maxn]={0,0,1};
int main()
{
for(int i=3;i<=20;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]);
int n,m;
cin>>n;
while(n--)
{
cin>>m;
double sum=1;
for(int i=1;i<=m;i++)
sum*=i;
printf("%.2llf%%\n",a[m]*1.0/sum*100);
}
return 0;
}
using namespace std;
const int maxn=100;
long long a[maxn]={0,0,1};
int main()
{
for(int i=3;i<=20;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]);
int n,m;
cin>>n;
while(n--)
{
cin>>m;
double sum=1;
for(int i=1;i<=m;i++)
sum*=i;
printf("%.2llf%%\n",a[m]*1.0/sum*100);
}
return 0;
}
组合排列:
C(m,n)=n!/(m!*(n-m)!);