题目
爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:
爱丽丝以 0 分开始,并在她的得分少于 K 分时抽取数字。 抽取时,她从 [1, W] 的范围中随机获得一个整数作为分数进行累计,其中 W 是整数。 每次抽取都是独立的,其结果具有相同的概率。
当爱丽丝获得不少于 K 分时,她就停止抽取数字。 爱丽丝的分数不超过 N 的概率是多少?
链接
思路
- 设
dp[i]
表示当积分为i
时,到游戏结束获胜的概率,即i<=N
。 - 考虑当积分为
K-1
时,还能继续抽取数字
抽取完后的积分在
[K,(K-1)+W]
之间,因为积分要小于等于 N N N,而 N N N可能大于这个区间,也可能在这个区间中。
所以i(表示积分)
在[K,min(N,K-1+W)]
这个区间中的概率为1,因为当前不能再抽取数字且积分小于等于 N N N。
- 由于抽到数字是随机的,当
i∈[0,K]
时,当前积分获胜的概率即为每个可能抽取的数字之后的积分获胜的概率
dp[i]=(dp[i+1]+dp[i+2]+...+dp[i+W])/W
- 所以
dp[K-1]=(dp[K]+dp[K+1]+...+dp[K-1+W])/W
,即[K,(K-1)+W]
之间小于等于 N N N的占比,所以dp[K-1]=min(N-(K-1),W)/W
。 - 由于
dp[i+1]=(dp[i+2]+dp[i+3]+...+dp[i+W+1])/W
,相减移项得
d p [ i ] = d p [ i + 1 ] − ( d p [ i + W + 1 ] − d p [ i + 1 ] ) / W ( i ∈ [ 0 , K − 1 ] ) dp[i]=dp[i+1]-(dp[i+W+1]-dp[i+1])/W(i∈[0,K-1]) dp[i]=dp[i+1]−(dp[i+W+1]−dp[i+1])/W(i∈[0,K−1])
class Solution {
public double new21Game(int N, int K, int W) {
if(K==0){
return 1;
}
//i最多取到K-1+W,所以数组长度K+W
double dp[]=new double[K+W];
for(int i=K;i<=N&&i<K+W;i++){
dp[i]=1;
}
dp[K-1]=(double)Math.min(N-(K-1),W)/W;
for(int i=K-2;i>=0;i--){
dp[i]=dp[i+1]-(dp[i+W+1]-dp[i+1])/W;
}
return dp[0];
}
}