普通网络:
假设有一个神经网络如上图所示,包含两个层(weight layer1、weight layer2,无激活函数)
那么对这个神经网络进行一次正向传播+反向传播的过程为:
正向传播:
输入x,经过第一层,f(x) = w1x + b1
经过第二层,g(f(x)) = w2f(x) + b2
Loss(y, g(f(x))) = (y – g(f(x)))^2(也可为其它损失计算方式,此处不重要)
反向传播:
普通网络:
假设有一个神经网络如上图所示,包含两个层(weight layer1、weight layer2,无激活函数)
那么对这个神经网络进行一次正向传播+反向传播的过程为:
正向传播:
输入x,经过第一层,f(x) = w1x + b1
经过第二层,g(f(x)) = w2f(x) + b2
Loss(y, g(f(x))) = (y – g(f(x)))^2(也可为其它损失计算方式,此处不重要)
反向传播: