1)对前景的提取:figure 1 中提出的STCs 的生成策略与作者diss的cube不同在哪里:
实际上为:对于外观特征,用过目标检测框架首先提取出一帧图片上多个目标区域形成一个Ba ,设置一些策略去掉不重要的部分。形成最终的 Ba。
在提取这个帧的光流特征,通过相邻两帧,得到初始的Bm,在于外观集合做差,得到新的Bm,然后对这个不规则区域做轮框的检测画框,然后再筛掉小区域。在于最终的Ba做并集得B。利用这个set B中的batch的位置信息,扩列前后的帧得到spatio-temporal cube。
(注,此部分代码细节没有跑 在 fore_det/obj_det_with_motion.py)
(注,此部分在项目实现里还提到了mmdetection部分,没有研究)
2)读下related work
3)对于外观学习的填空,一个spatio-temporal cube(时空块,含有D个patch)--->STC(patch1--patchD),抽掉不同的patch形成不同的填空,文中说对于缺失不同的patch的不完整incomplete event,即所谓的不同type,分别采用独立的DNN进行训练。即得到D个DNN。
异常的判断单元是对一个STC进行评分,对STC中缺失第i个patch的incomplete event,利用训练出来的第i个type的DNN进行检测和评分,然后求和,即eq3。 也就是说,时空块的长度,决定了训练的DNN的数量。--->即文中的集成策略,针对光流路的DNN同理。