不确定性建模
文章平均质量分 57
云淡风轻__
Take your time, step by step~
展开
-
多元高斯分布
但是我们这里面就先写一下还是同样的形态,但这里面我们有一个叫二拍 the d 次方,所以这里的 d 次方是跟我的 x 的维度是一样的,所以我们需要做一个这样的一个操作。我们这里面重点还是来看一下它的一个表示的方法,当然这个表示的方法我们没有必要去一定要记住,因为后面假设涉及到了多元告斯分布我们,而且我们想知道它的表示方法怎么样的时候,你可以去查一下相关的资料就可以了,所以没必要说一定要把它记住。好,那这个是多元的高斯分布,那具体在多元的高斯分布的情况下,我们的。,所以 RD 的一个向量,对吧?原创 2023-11-09 22:55:41 · 238 阅读 · 0 评论 -
Data Uncertainty Learning in Face Recognition
事实上,这种模糊的代表着数据的不确定性,这个网络向我们展示了在不确定视角下,简单的回归任务和面部识别回归任务共享同样的模式。在这篇论文中,我们展示了每个面部作为一个高斯分布去建模这种不确定性,同时我们提出两种方法去优化模型。方法一:我们从分布中抽样,得到一个stochastic嵌入。传统的面部识别方法即使在图片中面部模糊的情况下,耶给出确定的面部识别特征。这是我们的方法在主要任务上的性能,超过 了过去的方法。方法二:我们微调最后一个全连接层。原创 2023-11-02 16:47:46 · 141 阅读 · 0 评论