机器学习 | 使用Scikit-Learn实现分层抽样

本文详细介绍了分层抽样的概念、优点以及在Scikit-Learn中的应用。通过实例演示了如何在数据集如Iris数据集中使用stratify参数进行分层抽样,确保特征的均衡分布,适用于确保代表性并优化资源利用的研究场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本文中,我们将学习如何使用Scikit-Learn实现分层抽样。

什么是分层抽样?

分层抽样是一种抽样方法,首先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。可以提高总体指标估计值的精确度。在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。

如何进行分层抽样?

要执行分层抽样,您需要遵循以下讨论的步骤:

  1. 定义层:根据种族、性别、收入、教育水平、年龄组等相关特征,确定和定义人口中的子群体状态。
  2. 样本量:确定总体样本量和单个亚组样本量,确保所选每个亚组的比例在总体中具有比例代表性。
  3. 选择抽样:通过应用随机抽样技术,如简单随机抽样或系统随机抽样,从每个确定的分层中随机选择样本。
  4. 最终抽样:将来自不同层的所有样品组合成统一的代表性样品。

在这里插入图片描述

什么时候使用分层抽样?

  • 群体异质性:当群体可以根据特定特征分为相互排斥的亚组时。
  • 平等代表性:当我们想要确保一个特定的特征或一组特征在最终样本中得到充分代表时。
  • 资源限制:当您想将研究结果推广到整个人群并确保估计值对每个阶层都有效,但资源有限时。

例如,在市场调研中,如果需要调查不同年龄、性别、职业等人群的消费习惯,可以将总体按照这些特征进行分层,然后在每个层内随机抽样,从而得到更具代表性的样本。

需要注意的是,分层抽样并不是一种简单地将总体分成几份然后随机抽样的方法,而是需要考虑到各层之间的差异和相似性,以及抽样比例等因素。因此,在使用分层抽样时,需要根据具体情况进行设计和操作。

分层抽样的优点

分层抽样的优点包括:

  • 提高样本的代表性:分层抽样能够根据总体中不同层次的比例来抽取样本,从而使得样本更加具有代表性,提高由样本推断总体的精确性。

  • 便于组织:分层抽样可以根据不同的层次进行抽样,因此可以灵活地选择不同的抽样方法和组织方式,便于组织和管理。

  • 节省经费:由于分层抽样可以针对不同层次进行抽样,因此可以更加有效地利用资源,节省经费。

需要注意的是,分层抽样需要考虑到各层之间的差异和相似性,以及抽样比例等因素,因此需要更加精细的设计和操作。

与其他采样技术进行比较

分层抽样只是研究中使用的几种抽样技术之一。让我们将分层抽样与其他几种常见的抽样技术进行比较:

分层抽样:

  • 确保所有分组的代表性。当群体中存在显著变异时有用。
  • 需要了解有效分层的人群特征。

简单随机抽样:

  • 简单随机抽样很容易实现,特别是当总体是同质的时候。
  • 可能无法捕获群体内的变异性,某些亚组可能代表性不足。

整群抽样:

  • 在整群抽样中,人口被自然地分组为群组,这可能不一定基于感兴趣的特征。
  • 整个集群成为采样单位。
  • 聚类是随机选择的,并且所选聚类中的所有个体都包括在样本中。
  • 适用于地理上分散的人群,降低成本和时间。

配额抽样:

  • 随机抽样涉及根据某些特征将人口划分为亚组或配额。
  • 主要区别在于,在分层抽样中,我们从每个子组中抽取随机样本(概率抽样)。在配额抽样中,我们根据我们的知识为特定特征设定预定配额。此外,所选择的样本是非随机的,这意味着研究人员可以使用方便或判断抽样来满足预定的配额。

系统抽样:

  • 系统抽样(Systematic sampling)是一种抽样方法,在第一个成员被随机选择后,每第n个成员被选择纳入样本。这是通过选择一个随机的起点,然后从总体中挑选每第k个元素来完成的。“k”的值通过将总体的总大小除以期望的样本大小来确定。

分层抽样的实现

让我们加载 iris 数据集来实现分层采样。

import pandas as pd
from sklearn import datasets

iris = datasets.load_iris()
iris_df=pd.DataFrame(iris.data)

iris_df['class']=iris.target
iris_df.columns=['sepal_len', 'sepal_wid', 'petal_len', &#
<think>好的,用户想知道如何使用scikit-learn库来划分数据集为训练集和测试集。我需要先回忆一下scikit-learn中相关的模块。 记得scikit-learn的model_selection模块里有train_test_split函数,这个应该就是用来分割数据集的。用户可能对参数不太清楚,比如test_size、train_size、random_state这些。需要详细说明每个参数的作用和常用值。 另外,用户可能需要一个具体的例子来理解如何使用这个函数。我应该举一个简单的例子,比如加载鸢尾花数据集,然后应用train_test_split进行分割。代码部分要正确展示如何导入模块,调用函数,以及输出结果的形状,这样用户能直观看到分割后的数据量。 还要注意强调random_state参数的作用,确保结果可重复。可能用户在使用时如果没有设置随机种子,每次分割结果会不同,导致模型评估不稳定,这点需要提醒。 另外,是否需要提到分层抽样?比如stratify参数,在处理分类问题时保持训练集和测试集的类别分布一致。这可能对用户有帮助,特别是当数据集类别不平衡时。 最后,生成相关问题的时候,要考虑用户可能的后续疑问,比如参数调整、交叉验证、处理不平衡数据的分割方法等。这些问题可以引导用户进一步学习相关的内容。</think>要使用Python的scikit-learn库划分数据集为训练集和测试集,可以通过`train_test_split`函数实现。具体步骤如下: ### 步骤说明 1. **导入模块** 从`sklearn.model_selection`导入`train_test_split` 2. **准备数据** 将特征数据存储在变量$X$中,标签数据存储在变量$y$中,格式应为NumPy数组或Pandas DataFrame 3. **调用函数** 使用`train_test_split(X, y, test_size=比例值, random_state=种子)`进行分割,关键参数: - `test_size`:测试集占比(如0.2表示20%) - `random_state`:随机种子(确保结果可复现) - `stratify`:按指定变量分层抽样(保持类别比例) ### 代码示例 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载示例数据集 data = load_iris() X = data.data # 特征矩阵 y = data.target # 标签向量 # 划分数据集(测试集占30%) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42, # 固定随机种子 stratify=y # 保持类别分布一致 ) # 查看数据形状 print(f"训练集特征: {X_train.shape}, 测试集特征: {X_test.shape}") # 输出 (105,4) 和 (45,4) print(f"训练集标签分布: {np.bincount(y_train)}") # 各类别样本数按比例减少 ``` ### 注意事项 -使用`stratify=y`时,能确保训练集/测试集的类别分布与原始数据集一致,这对类别不平衡数据尤其重要[^1] - 参数`shuffle=True`默认启用,会在分割前随机打乱数据顺序[^2] - 预处理(如标准化)应在分割**后**进行,避免数据泄露问题[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值