使用Python绘制发散条形图案例

本文介绍了如何使用Python和matplotlib库在Mercedes-Benz汽车销售数据上创建发散条形图,以直观比较各季度的销售情况,区分低于60000和超过60000的销量。
摘要由CSDN通过智能技术生成

发散条形图用于简化多个组的比较。它的设计允许我们比较各组中的数值。它还帮助我们快速地想象出有利的和不利的或积极的和消极的反应。条形图由从中间开始的两个水平条的组合组成-一个条从右向左延伸,另一个从左向右延伸。条形的长度与它所代表的数值相对应。

通常,两个分叉的条形用不同的颜色表示。左边的值通常但不一定是负面或不满意的反应。

Python没有特定的函数来绘制发散条形图。另一种方法是使用hlines函数绘制具有一定线宽值的水平线,将其表示为水平条。

数据集

Mercedes Benz Car Sales Data
地址:
https://www.kaggle.com/datasets/luigimersico/mercedes-benz-car-sales-data

实现步骤

  1. 导入模块
  2. 导入或创建数据
  3. 预处理数据集并清除不必要的噪声
  4. 指定表示水平条的颜色
  5. 按升序对值进行排序
  6. 设置x轴和y轴的标签以及图表的标题
  7. 显示发散条形图
import pandas as pd 
import matplotlib.pyplot as plt 
import string as str


# Creating a DataFrame from the CSV Dataset 
df = pd.read_csv("car_sales.csv", sep=';') 

# Separating the Date and Mercedes-Benz Cars unit sales (USA) 
df['car_sales_z'] = df.loc[:, ['Mercedes-Benz Cars unit sales (USA)']] 
df['car_sales_z'] = df['car_sales_z'] .str.replace( 
	',', '').astype(float) 

# Removing null value 
df.drop(df.tail(1).index, inplace=True) 

for i in range(35): 
	# Colour of bar chart is set to red if the sales 
	# is < 60000 and green otherwise 
	df['colors'] = ['red' if float( 
		x) < 60000 else 'green' for x in df['car_sales_z']] 

# Sort values from lowest to highest 
df.sort_values('car_sales_z', inplace=True) 

# Resets initial index in Dataframe to None 
df.reset_index(inplace=True) 

# Draw plot 
plt.figure(figsize=(14, 10), dpi=80) 

# Plotting the horizontal lines 
plt.hlines(y=df.index, xmin=60000, xmax=df.car_sales_z, 
		color=df.colors, alpha=0.4, linewidth=5) 

# Decorations 
# Setting the labels of x-axis and y-axis 
plt.gca().set(ylabel='Quarter', xlabel='Sales') 

# Setting Date to y-axis 
plt.yticks(df.index, df.Date, fontsize=12) 

# Title of Bar Chart 
plt.title('Diverging Bars Chart Example', fontdict={ 
		'size': 20}) 

# Optional grid layout 
plt.grid(linestyle='--', alpha=0.5) 

# Displaying the Diverging Bar Chart 
plt.show() 

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值