发散条形图用于简化多个组的比较。它的设计允许我们比较各组中的数值。它还帮助我们快速地想象出有利的和不利的或积极的和消极的反应。条形图由从中间开始的两个水平条的组合组成-一个条从右向左延伸,另一个从左向右延伸。条形的长度与它所代表的数值相对应。
通常,两个分叉的条形用不同的颜色表示。左边的值通常但不一定是负面或不满意的反应。
Python没有特定的函数来绘制发散条形图。另一种方法是使用hlines函数绘制具有一定线宽值的水平线,将其表示为水平条。
数据集
Mercedes Benz Car Sales Data
地址:
https://www.kaggle.com/datasets/luigimersico/mercedes-benz-car-sales-data
实现步骤
- 导入模块
- 导入或创建数据
- 预处理数据集并清除不必要的噪声
- 指定表示水平条的颜色
- 按升序对值进行排序
- 设置x轴和y轴的标签以及图表的标题
- 显示发散条形图
import pandas as pd
import matplotlib.pyplot as plt
import string as str
# Creating a DataFrame from the CSV Dataset
df = pd.read_csv("car_sales.csv", sep=';')
# Separating the Date and Mercedes-Benz Cars unit sales (USA)
df['car_sales_z'] = df.loc[:, ['Mercedes-Benz Cars unit sales (USA)']]
df['car_sales_z'] = df['car_sales_z'] .str.replace(
',', '').astype(float)
# Removing null value
df.drop(df.tail(1).index, inplace=True)
for i in range(35):
# Colour of bar chart is set to red if the sales
# is < 60000 and green otherwise
df['colors'] = ['red' if float(
x) < 60000 else 'green' for x in df['car_sales_z']]
# Sort values from lowest to highest
df.sort_values('car_sales_z', inplace=True)
# Resets initial index in Dataframe to None
df.reset_index(inplace=True)
# Draw plot
plt.figure(figsize=(14, 10), dpi=80)
# Plotting the horizontal lines
plt.hlines(y=df.index, xmin=60000, xmax=df.car_sales_z,
color=df.colors, alpha=0.4, linewidth=5)
# Decorations
# Setting the labels of x-axis and y-axis
plt.gca().set(ylabel='Quarter', xlabel='Sales')
# Setting Date to y-axis
plt.yticks(df.index, df.Date, fontsize=12)
# Title of Bar Chart
plt.title('Diverging Bars Chart Example', fontdict={
'size': 20})
# Optional grid layout
plt.grid(linestyle='--', alpha=0.5)
# Displaying the Diverging Bar Chart
plt.show()