python学习之numpy

numpy学习总结

1、numpy安装

1.pip安装

pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple(国外太慢直接用清华源)

2.解释器中安装

(1)先添加清华源:https://pypi.tuna.tsinghua.edu.cn/simple/

image-20211122104415187

(2)搜索numpy并安装

image-20211122104550154

3.Linux下安装

Ubuntu & Debian:
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose

CentOS/Fedora:
sudo dnf install numpy scipy python-matplotlib ipython python-pandas sympy python-nose atlas-devel

4.Mac 系统

Mac 系统的 Homebrew 不包含 NumPy 或其他一些科学计算包,所以可以使用以下方式来安装:
pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

2、numpy对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。

ndarray 内部由以下内容组成:

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。
  • 数据类型或 dtype,描述在数组中的固定大小值的格子。
  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。
  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。

image-20211122101218926

3、numpy支持的数据类型

名称描述
bool_布尔型数据类型(True 或者 False)
int_默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
intc与 C 的 int 类型一样,一般是 int32 或 int 64
intp用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
int8字节(-128 to 127)
int16整数(-32768 to 32767)
int32整数(-2147483648 to 2147483647)
int64整数(-9223372036854775808 to 9223372036854775807)
uint8无符号整数(0 to 255)
uint16无符号整数(0 to 65535)
uint32无符号整数(0 to 4294967295)
uint64无符号整数(0 to 18446744073709551615)
float_float64 类型的简写
float16半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_complex128 类型的简写,即 128 位复数
complex64复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128复数,表示双 64 位浮点数(实数部分和虚数部分)

4、numpy的初级应用

1.np.array应用:

import numpy as np 
a = np.array([1, 2, 3]) #创建初始化为[1,2,3]的numpy的数组
b = np.array([[1,  2],  [3,  4]])  
print (a)
print (b)
# 输出结果
# [1 2 3]
# [[1  2] 
#  [3  4]]

5、numpy 切片和索引

1.切片:本质和list的切片操作一样

冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。
省略号 ,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。
重点是多维数组的切片操作:

例:

import numpy as np
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])  
print (a[...,1])   # 行不用管,第2列元素
print (a[1,...])   # 第2行元素,列不用管
print (a[...,1:])  # 第2列及剩下的所有元素
# 输出结果为:
# [2 4 5]
# [3 4 5]
# [[2 3]
#  [4 5]
#  [5 6]]

未完待续……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值