使用python虚拟环境踩过的坑

本文解决了一个在PyCharm中使用虚拟环境时遇到的问题,即在Terminal中无法安装包到虚拟环境中。通过指定虚拟环境中的python.exe路径,可以在Terminal中正确地使用pip安装包。

安装python虚拟环境踩过的坑

最近使用python的虚拟环境,发现pycharm的terminal中无法安装包进入虚拟环境的包中,使用的是python3.5(我也不清楚是不是python的问题,原来可以虚拟环境也是可以安的)。
现在是解决方法:

pychram解决方式

我最先尝试直接用pycharm新建虚拟环境,建好了以后setting中发现project用了新环境的python,但是terminal还是旧环境的python。我一度以为是pycharm的小bug或者是还没apple成功。后来才发现pycharm里terminal的python是单独出来的,如果想在terminal里打开某个环境的python,只需要直接把该python的绝对路径输入即可。

所以子需要把目录改为
`(venv) D:\文件\实训文件\实训代码\untitled-master\venv\Scripts>

虚拟环境中Scripts包含有python.exe,可以使用pip下载包了。

<think>嗯,用户想了解Python venv和Conda创建虚拟环境的区别。这个问题在Python开发中很常见,用户可能是刚开始接触虚拟环境的新手,也可能是遇到了环境管理问题的开发者。 从用户提问方式看,ta应该有一定技术基础,但可能对底层机制不太熟悉。需要避免使用太多专业术语,用对比表格和具体例子说明会更清晰。 我注意到之前提供的参考引用[1][2]正好解释了这个问题,但需要提炼核心区别。主要差异在五个维度:实现机制、依赖管理、跨语言支持、环境隔离强度、预编译包支持。其中最关键的是: - venv只能管Python包,通过复制基础解释器实现 - Conda能管多语言依赖,还能安装特定Python版本 用户可能没意识到Conda还能管理非Python依赖,这点值得强调。另外ta可能关心实际使用场景,比如做数据科学时用Conda更方便,而纯Python开发用venv更轻量。 需要提醒用户注意:Conda环境不能嵌套使用,而venv可以嵌套。这个很多开发者都会到。 最后考虑设计相关问题时,要覆盖安装、使用场景、常见问题等维度,比如"如何选择"这个问题能帮助用户决策。</think>以下是Python venv与Conda虚拟环境的详细对比分析: --- ### **核心区别对比表** | **特性** | **venv (Python内置)** | **Conda (Anaconda/Miniconda)** | |------------------------|---------------------------------------|---------------------------------------| | **实现机制** | 复制当前Python解释器 | 创建完全独立的环境(含独立解释器) | | **依赖管理** | 仅Python包 (`pip`管理) | Python包+非Python依赖(C/C++库等) | | **环境隔离** | 隔离Python包 | 完全隔离(Python版本/系统库/编译器) | | **跨平台支持** | 官方支持(Windows/Linux/macOS) | 官方支持(包括ARM架构) | | **预编译包支持** | 依赖第三方源(如PyPI) | 内置预编译科学计算包(MKL,OpenBLAS等) | | **非Python依赖** | ❌ 不支持 | ✅ 通过`conda install`管理 | | **环境嵌套** | ✅ 可嵌套创建 | ❌ 禁止嵌套 | --- ### **具体差异详解** 1. **环境独立性** - **venv**: 仅隔离Python包,**共享基础Python解释器**。若系统Python为3.8,所有venv环境均为3.8版本[^1]。 ```bash python -m venv myenv # 创建基于当前Python的环境 ``` - **Conda**: 可**指定任意Python版本**(即使系统中未安装)[^2]: ```bash conda create -n py37 python=3.7 # 独立安装Python 3.7 ``` 2. **依赖管理范围** - **venv**: 仅限Python包(通过`pip install`),无法管理C/C++库等系统依赖。 - **Conda**: 可管理复杂科学计算栈(如安装NumPy时自动部署MKL加速库): ```bash conda install numpy # 自动安装优化的二进制版本 ``` 3. **性能优化** - Conda为科学计算包(NumPy/Pandas)提供**预编译的Intel MKL加速版本**,相比venv的PyPI安装有显著性能提升[^1]。 --- ### **使用场景建议** | **场景** | **推荐工具** | **原因** | |-------------------------|--------------|---------------------------------------| | 纯Python项目 | venv | 轻量级,无额外依赖 | | 数据科学/AI开发 | Conda | 预编译库加速,非Python依赖管理 | | 需多版本Python | Conda | 灵活切换解释器版本 | | 部署服务器环境 | venv | 避免Conda环境占用过大存储空间 | > ⚠️ **注意**:Conda环境不可嵌套创建,但venv可在Conda环境内部使用(解决特殊依赖冲突)。 --- ### **操作示例对比** #### 创建环境 ```bash # venv python -m venv project_env source project_env/bin/activate # Linux/macOS project_env\Scripts\activate # Windows # Conda conda create --name data_env python=3.9 conda activate data_env ``` #### 安装包 ```bash # venv (仅Python包) pip install pandas # Conda (Python包+系统库) conda install pandas # 自动安装依赖的C库 ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值