机器学习就是自动找函式
第一,弄清楚想找什么样的函式?
机器学习包括三大类问题:Generation(文句、图片等用于翻译、产生图像等)、Regression、Classification
例如解决Binary Classification(Input->function->Yes/No)、Multi-Class classification(Input->function->class 1,class 2,…,class M)
对于解决不同的任务,需要弄清楚它的本质任务属性从而确定函式的类别
第二,怎样告诉机器你想找什么样的函式?
- Supervised Learning:提供带有Label的数据(x->function->result(与label比较)) 这时怎样让机器学习呢? 利用函式Loss:机器自动找出Loss最低的函式,此时每一步的训练都需要Label
- Reinforcement Learning:通过自己一步一步地判断得到最终结果,并把最终结果作为Reward使机器能不断提升自身的学习能力。例如早前的AlphaGo=Supervised Learning+ reinforcement Learning,现在最新一代的AlpahGo指利用Reinforcement Learning也可以实现很好的效果,比较广泛应用是因为不必在下棋的每一步都给出相应的Label,减少大量工作。
- Unsupervised Learning:不需要Label的一类方法(之后详细介绍)。
第三,机器怎样找出你想要的函式?
- 第一,给定函式寻找的范围(例如Linear、Neural Network等)
- 第二,函式寻找的方法——Gradient Desent(例如Implement the algorithm by yourself,Deep learning framework Pytorch等等)
前沿研究学习(将来计划学习的内容)
Explainable AI/Adversarial Attack/Anonaly Detection/Transfer Leraning(Domain Adversarial Learning)/Meta Learning(Learn to learn,让机器学习更聪明一点)/Life-long Learning(Continuous Learning)