题目描述
设某一机器由n个部件组成,每一种部件都可以从m个不同的供应商处购得。设Wij是从供应商j处购得的部件i的重量,Cij是相应的价格。对于给定的机器部件重量和机器部件价格,设计一个优先队列式分支限界法,计算总价格不超过d的最小重量机器设计。
输入
第一行有3个正整数n,m,d。接下来的2n行,每行n个数。前n行是c,后n行是w。
输出
将计算的最小重量以及每个部件的供应商输出
样例输入
3 3 4
1 2 3
3 2 1
2 2 2
1 2 3
3 2 1
2 2 2
样例输出
4
1 3 1
思路:dfs回溯问题
#include <iostream>
using namespace std;
int a[1000][1000];
int c[1000][1001],w[1010],s[1010];
int minn=0x3fffffff,n,m,k,t,t1;
void dfs(int index)
{
if(index==n+1)
{
minn=t;
for(int i=1;i<=n;i++)
s[i]=w[i];
return ;
}
for(int i=1;i<=m;i++)//m个厂家
{
if(t+c[index][i]<minn&&t1+a[index][i]<=k)
{
w[index]=i;
t+=c[index][i];
t1+=a[index][i];
dfs(index+1);
t-=c[index][i];
t1-=a[index][i];
}
}
}
int main()
{
cin>>n>>m>>k;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>c[i][j];
dfs(1);
cout << minn << endl;
for(int i=1;i<=n;i++)
{
if(i!=1) cout<<" ";
cout<<s[i];
}
return 0;
}
我比较习惯下面一种
#include <iostream>
using namespace std;
int a[1000][1000];
int c[1000][1001],w[1010],s[1010];
int n,m,k,minn=0x3fffffff,t1,t;
void dfs(int index,int summ,int mx)
{
if(index==n+1)
{
minn=summ;
for(int i=1;i<=n;i++) s[i]=w[i];
return ;
}
for(int i=1;i<=m;i++)//对于每一个厂家
{
if(summ+c[index][i]<minn&&mx+a[index][i]<=k)
{
w[index]=i;
t1+=a[index][i];
t+=c[index][i];
dfs(index+1,t,t1);
t1-=a[index][i];
t-=c[index][i];
}
}
}
int main()
{
cin>>n>>m>>k;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>c[i][j];
dfs(1,0,0);
cout<<minn<<endl;
for(int i=1;i<=n;i++)
{
if(i!=1) cout<<" ";
cout<<s[i];
}
return 0;
}