lambda map reduce方法的使用

lambda map reduce方法的使用

#lanbda表达式,格式:lambda 参数列表:函数体
add_lambda=lambda x,y:x+y
add_lambda(1,2)

#map函数
list1=[1,2,3,4,5]
r=map(lambda x:x+x,list1)
print(list(r))
m1=map(lambda x,y:x*x+y,[1,2,3,4,5],[1,2,3,4,5])
print(list(m1))

#filter过滤器
def is_not_none(s):
    return s and len(s.strip())>0
list2=["我是"," ","","老王"]
result=filter(is_not_none,list2)
print(list(result))

#reduce 函数,实现累加
from functools import reduce
f= lambda x,y:x+y
r=reduce(f,[1,2,3,4,5])
print(r)

#列表推导式
#根据已有列表推导出新的列表,若将[]换为{},则变为集合推导式
list3=[1,2,3,4,5]
f=map(lambda x:x+x,list1)
print(list(f))
list5=[i*i for i in list3 if i*i>3]
print(list5)

#字典推导式
s={
    "张三":12,
    "李四":23,
    "王五":24,
}
#拿出所有的key变为列表
s_key=[key for key,value in s.items()]
print(s_key)
#key和value颠倒
s1={value:key for key,value in s.items() if key=="张三"}
print(s1)

#闭包,一个返回值是函数的函数
#调用后打印当前的时间
import time
def runtime():
    def now_time():
        print(time.time())
    return now_time
f=runtime()
f()

读出一个文件中带有某个关键字的行

#读出一个文件中带有某个关键字的行
def make_filter(keep):
    def the_filter(file_name):
        file=open(file_name)
        lines=file.readlines()
        file.close()
        filter_doc=[i for i in lines if keep in i]
        return filter_doc
    return the_filter
filter1=make_filter("功能")
filter_result=filter1("测试.txt")
print(filter_result)

装饰器、语法糖、注解

#装饰器、语法糖、注解
import time 
def runctime(func):
    def get_time(*args,**kwargs):
        print(time.time())
        func(*args,**kwargs)
    return get_time

@runctime
def student_run():
    print("跑步")

@runctime
def student_run2(i,j):
    print("跑步")

student_run()
student_run2(1,1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值