自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 吴恩达机器学习入门——异常检测

吴恩达机器学习入门——异常检测高斯分布异常检测算法开发和评估异常检测系统异常检测与监督学习的区别异常检测算法的特征高斯分布对于高斯函数的参数:u为均值,δ2为方差。异常检测算法首先,选择很有可能出现异常的样本xi,然后进行数据拟合得到μ\muμ和δ2 ,最后计算对于新给出的事件,计算p(x),如果p(x)<ε\varepsilonε,则判断为异常。下面就是一个例子。开发和评...

2019-10-15 21:02:29 142

原创 吴恩达机器学习入门——降维

[吴恩达机器学习入门——降维]降维的作用有两个:一是进行数据压缩、二是可视化。数据压缩可视化PCAPCA算法降维的作用有两个:一是进行数据压缩、二是可视化。数据压缩如上图的每个不同颜色的点,本来他们在坐标轴的表示方法都是二维的,现在如果我们找到图中的绿色线,我们可以直接用1维的坐标表示。同样对于多维数据,比如上图的3D数据,我们找到一个平面曲面的函数,就能直接用二维来表示。可视化...

2019-10-12 20:55:39 323

原创 吴恩达机器学习入门——无监督学习

吴恩达机器学习入门——无监督学习k-means算法随机初始化选择聚类数量无监督学习的应用之一就是对一组不含标签的数据集进行聚类。k-means算法如下图所示:该算法先找两个聚类点(红色×和蓝色×),然后对所有的绿色样本进行遍历,根据绿色点与红色x和蓝色x的距离进行归类。下图为归类完的图形:然后继续移动聚类点,直到点的颜色不再改变。算法步骤:计算出到距离聚类点的最小值。随机初始...

2019-10-11 19:45:56 208

原创 吴恩达机器学习入门——支持向量机

@TOC优化目标这是一个logistic回归的例子,如果y=1,我们也希望模型得出来的代价函数也应为1;如果y=0,我们也希望模型得出来的代价函数也应为0;我们要使代价函数尽可能小,z要趋于无穷大,上图中的粉色的图像就是SVM向量机,我们用它来替代代价函数,它的计算效果一样。logistic回归经过优化得到SVM的代价函数。SVM与logistic回归不同点是,SVM的输出是直接...

2019-09-26 20:51:57 261

原创 吴恩达机器学习入门——应用机器学习方法

吴恩达机器学习入门——应用机器学习方法机器学习诊断法模型选择问题正则化、偏差与方差机器学习诊断法如何判断一个学习算法的好坏,当该算法的预测值有很大的偏差,我们可以采取图内的几个方法。首先我们要把样本分成两部分,一部分为训练集,一部分为测试集,数目大概7:3左右。然后利用训练集确定参数θ\thetaθ,用测试集计算测试误差即:测试集的代价函数。该图为测试和训练线性回归的步骤。同样,下...

2019-09-24 09:11:35 375

原创 吴恩达机器学习入门——神经网络

吴恩达机器学习入门——神经网络神经网络简介工作方式神经网络简介如图所示的图形分类问题,像该图的像素为50*50,如果我们采用之前学过的logistic回归算法,会得到3万左右个特征,这样计算量过大,由此可见logistic回归不适合n很大的非线性假设。人类大脑可以通过一些感官组织获取外界信息,并进行学习和处理它。神经网络也是如此。上图就是神经网络的工作方式,layer1代表输入层、l...

2019-09-18 22:23:43 207

原创 吴恩达机器学习入门——正则化

吴恩达机器学习入门——正则化过度拟合解决方法正则化正则化下的梯度下降正则化下的正规方程逻辑回归的正则化过度拟合由上面两图可知:图一是一种欠拟合的类型,它具有较高的偏差。图二是我们要得到的结果,刚好拟合。图三就是过拟合,即使图三的曲线的代价函数很小,即刻意让每个样本都符合假定条件,但并不能正确的预测问题。解决方法解决过拟合问题的方法有两种:一种是减少特征个数:人为选择特征或者模型...

2019-09-16 22:16:20 123

原创 吴恩达机器学习入门——Logistic 回归

吴恩达机器学习入门——Logistic 回归分类问题模型建立决策判断代价函数多元分类分类问题如上图的分类问题,如果用粉色的hθ\thetaθ(x)函数,可以以0.5为判断值进行分类,区分出0和1,而当我们增加一个新的样本(ps:最右边的那个红色×)并用蓝色的hθ\thetaθ(x)来判断会出错。这样我们得到一个结论,用线性回归用于分类问题效果不好,而且线性回归的值不会都是0和1。这就引出了...

2019-09-14 17:23:43 332

原创 吴恩达机器学习入门——多变量线性回归

吴恩达机器学习入门——多变量线性回归假设多元梯度下降算法特征缩放正规方程优缺点假设假设房价不仅受平方数影响,还受到房间数、年份、楼层数的影响。这样奥预估房价就是一个受多变量影响的问题。其中x(i)为一个列向量,xj(i)为一个列向量中第j个值。这时它的假设函数、代价函数应为下图这也称为多元线性回归。多元梯度下降算法当n>1时,是多个θ\thetaθ值不断更新的。特征缩放...

2019-09-11 21:45:06 223

原创 吴恩达机器学习入门——单变量线性回归

吴恩达机器学习入门——单变量线性回归模型代价函数梯度下降算法模型h为假设函数,通过训练集的输入,经过学习算法,可以得到假设函数。这个假设函数就可以来计算回归值(预估值)。代价函数代价函数也称为平方误差函数。它是解决回归问题的最佳手段。代价函数主要用于之后求出和样本数据最佳拟合的假设函数的一个辅助函数,它就是利用假设函数的预测值减去真实值的平方和的值作为结果。代价函数最小的参数即为假设...

2019-09-11 09:24:04 182

原创 吴恩达机器学习入门——绪论

吴恩达机器学习入门——绪论机器学习简介应用:机器学习算法:监督学习无监督学习机器学习简介机器学习即使机器自己学习如何去做。应用: 数据挖掘 实现人类编程不出来的程序:CV、NLP、手写识别、自动驾驶 私人定制的程序 理解人类的学习过程和大脑运行机器学习算法: 监督学习(人为) ...

2019-09-10 10:14:52 527

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除