吴恩达机器学习入门——无监督学习

这篇博客介绍了吴恩达机器学习课程中的无监督学习部分,重点讲解了k-means算法的工作原理。文章通过示例说明了如何进行随机初始化,并描述了算法的迭代过程,包括如何确定样本点的类别归属以及聚类点的移动,直到聚类稳定。
摘要由CSDN通过智能技术生成

吴恩达机器学习入门——无监督学习


无监督学习的应用之一就是对一组不含标签的数据集进行聚类。

k-means算法

如下图所示:该算法先找两个聚类点(红色×和蓝色×),然后对所有的绿色样本进行遍历,根据绿色点与红色x和蓝色x的距离进行归类。
在这里插入图片描述
下图为归类完的图形:在这里插入图片描述
然后继续移动聚类点,直到点的颜色不再改变。
在这里插入图片描述
算法步骤:
在这里插入图片描述
计算出到距离聚类点的最小值。

随机初始化

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值