1.实例化saver 和保存
saver = tf.train.Saver()
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
注释: 这是在之前写的代码复制过来的,本人贼懒
2. 在测试文件中把Model 提出来
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
#在上面代码,实现了在 ckpt 文件中读出 w 和 b 实现了断点训练
3.若使用滑动平均函数
在backward函数中添加
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,
global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
在测试函数中添加
ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
backward.py和test.py纵览如下:
#!/usr/bin/python
# -*- coding:utf-8 -*-
# @File : backward.py
import tensorflow as tf
# import tensorflow.examples.tutorials.mnist as
from tensorflow.examples.tutorials.mnist import input_data
import os
import forward
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99
def backward(mnist):
x = tf.placeholder(tf.float32,[None, forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32,[None, forward.OUTPUT_NODE])
y = forward.forward(x, REGULARIZER)
#define current steps,note: global_step is untrainable
global_step = tf.Variable(0, trainable=False)
#ce = tf.nn.sparse_softmax_cross_entropy_with_logits() ,type of labels is int
#tf.nn.sofrmax_cross_entropy_with_logits() type of label is float
#loss = tf.reduce_mean(ce) + tf.add_n(tf.get_collection('losses')
# using sofemax and cross_entropy
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
#define losses
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY
)
#define exponent
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True
)
# learing_rate = tf.train.exponential_decay(
# LEARNING_RATE_BASE,
# global_step,
# mnist.train.num_examples/BATCH_SIZE,
# LEARNING_RATE_DECAY,
# staircase=True
# )
#define train_step
#train_setp = tf.train.GradientDescentOptimizer().minimize(loss)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
# ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)\
# ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
# with tf.control_dependencies([train_step, ema_op]):
# trian_op = tf.no_op(name='train')
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print ("After %d train steps, loss on training batch is %g " %(step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
backward(mnist)
if __name__ == '__main__':
main()
#!/usr/bin/python
# -*- coding:utf-8 -*-
# 19-2-27 下午4:27
# @File : test.py
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import forward
import backward
TEST_INTERVAL_SECS = 5
def test(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, forward.OUTPUT_NODE])
y = forward.forward(x, None)
ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
# with tf.Graph().as_default() as g:
# x = tf.placeholder(tf.float32, [None,forward.INPUT_NODE])
# y_ = tf.placeholder(tf.float32, [None,forward.OUTPUT_NODE])
# y = forward.forward(x, None)
#
# ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
# ema_restore = ema.variables_to_restore(
# tf.train.Saver(ema_restore)
correct_predict = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print("After %s training steps,test accuracy = %g" % (global_step, accuracy_score))
else:
print('None checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
test(mnist)
if __name__ == '__main__':
main()