AtCoder Beginner Contest 178 F - Contrast

文章介绍了AtCoderBeginnerContest178F-Contrast问题的解决方案,主要涉及两个有序数组A和B,要求重新排列B使得A和B没有相同的元素。通过鸽巢原理分析,当数组中某个数出现次数大于等于n+1时无法满足条件。接着利用C和D数组表示A和B中小于等于某个值的数的出现次数,并构建不等式来寻找可能的排列方式。最后提供了满足条件的判断和构造排列的代码实现。
摘要由CSDN通过智能技术生成

AtCoder Beginner Contest 178 F - Contrast

题意:

​ 给出 A A A B B B两个有序数组,长度为 n n n,任意排列 B B B,问是否有一种方案使得对于所有的 i , ( 1 < = i < = n ) i,(1<=i<=n) i,(1<=i<=n)都有 A i ≠ B i A_i≠B_i Ai=Bi

分析:

​ 如果存在某一个数出现的次数大于等于 n + 1 n+1 n+1,根据鸽巢原理(Pigeonhole Principle)一定无解。

​ 设 C [ i ] C[i] C[i]表示 A A A数组中值小于或等于 i i i的数的出现次数, D [ i ] D[i] D[i]表示 B B B数组中值小于或等于 i i i的数的出现次数。

​ 将 C [ i ] C[i] C[i] D [ i ] D[i] D[i]看作是 x x x轴上的点,对于所有的 i ( 1 < = i < = n ) i(1<=i<=n) i(1<=i<=n), ( C [ i − 1 ] , C [ i ] ) 、 ( D [ i − 1 ] , D [ i ] ) (C[i-1],C[i])、(D[i-1],D[i]) (C[i1],C[i])(D[i1],D[i])形成若干条线段。考虑构造一个 x x x,使得对于任意的 i ( 1 < = i < = n ) i(1<=i<=n) i(1<=i<=n),都有 ( D [ i − 1 ] + x , D [ i ] + 1 ) (D[i-1]+x,D[i]+1) (D[i1]+x,D[i]+1) ( C [ i − 1 ] , C [ i ] ) (C[i-1],C[i]) (C[i1],C[i]) ( C [ i − 1 ] + n , C [ i ] + n ) (C[i-1]+n,C[i]+n) (C[i1]+n,C[i]+n)不相交。

在这里插入图片描述

由三条线段关系得到不等式
{ D [ i − 1 ] + x > = C [ i ] D [ i ] + x < = C [ i − 1 ] + n \begin{cases} D[i-1]+x >= C[i] \\ D[i]+x <= C[i-1]+n \end{cases} {D[i1]+x>=C[i]D[i]+x<=C[i1]+n


C [ i ] − D [ i − 1 ] < = x < = C [ i − 1 ] + n − D [ i ] C[i]-D[i-1] <= x <= C[i-1]+n-D[i] C[i]D[i1]<=x<=C[i1]+nD[i]
可以证明每一个数在A,B中一共出现的次数小于等于 n n n时,合法的 x x x一定存在。

证明:

假设 x x x不存在,即存在一对 ( i , j ) (i,j) (i,j)使得 C [ i ] − D [ i − 1 ] > C [ j − 1 ] + n − D [ j ] C[i]-D[i-1] > C[j-1]+n-D[j] C[i]D[i1]>C[j1]+nD[j]

  • i = = j i==j i==j,有 ( C [ i ] − C [ i − 1 ] ) + ( D [ i ] − D [ i − 1 ] ) > n (C[i]-C[i-1])+(D[i]-D[i-1])>n (C[i]C[i1])+(D[i]D[i1])>n,即表示某一个数字在 A A A B B B中一共的出现次数大于 n n n,这与我们的前提条件不符,所以当 i = = j i==j i==j时假设不成立。

  • i < j i<j i<j,有 ( C [ i ] − C [ j − 1 ] ) + ( D [ j ] − D [ i − 1 ] ) > n (C[i]-C[j-1])+(D[j]-D[i-1])>n (C[i]C[j1])+(D[j]D[i1])>n,此时 ( C [ i ] − C [ j − 1 ] ) < = 0 (C[i]-C[j-1])<=0 (C[i]C[j1])<=0,所以 ( D [ j ] − D [ i − 1 ] ) > n (D[j]-D[i-1]) > n (D[j]D[i1])>n。但根据定义, D D D数组的值域为 [ 0 , n ] [0,n] [0,n],所以在 i < j i<j i<j时假设不成立。

  • i > j i>j i>j ( C [ i ] − C [ j − 1 ] ) + ( D [ j ] − D [ i − 1 ] ) > n (C[i]-C[j-1])+(D[j]-D[i-1])>n (C[i]C[j1])+(D[j]D[i1])>n,此时 ( D [ j ] − D [ i − 1 ] ) < = 0 (D[j]-D[i-1])<=0 (D[j]D[i1])<=0,所以 ( C [ i ] − C [ j − 1 ] ) > n (C[i]-C[j-1]) > n (C[i]C[j1])>n。但根据定义, C C C数组的值域为 [ 0 , n ] [0,n] [0,n],所以在 i > j i > j i>j时假设不成立。

代码:

#include<bits/stdc++.h>
using namespace std ;
#define ll long long
#define double long double
const ll N = 1e6+9 ;
const ll INF = 1e17 ;
const ll mod = 998244353 ;
//const double pi = acos(-1) ;
const double eps = 1e-7 ;
ll gcd( ll a , ll b ){ return a == 0 ? b : gcd( b%a , a ) ; }
ll lcm( ll a , ll b ){ return (a/gcd(a,b))*b ; }
ll Abs( ll x ){ return x < 0 ? -x : x ; }
ll n , a[ N ] , b[ N ] , c[ N ] , d[ N ] ;
void solve(){
    cin >> n ;
    for( int i = 1 ; i <= n ; i ++ ){
        cin >> a[ i ] ; c[ a[i] ] ++ ;
    }
    for( int i = 1 ; i <= n ; i ++ ){
        cin >> b[ i ] ; d[ b[i] ] ++ ;
    }

    for( int i = 1 ; i <= n ; i ++ ) if( c[i]+d[i] > n ){
        cout << "No\n" ; return ;
    }

    for( int i = 1 ; i <= n ; i ++ ){
        c[ i ] += c[ i-1 ] ; d[ i ] += d[ i-1 ] ;
    }

    ll l = 0 , r = INF ;
    for( int i = 1 ; i <= n ; i ++ ){
        l = max( l , c[i]-d[i-1] ) ; r = min( r , c[i-1]+n-d[i] ) ;
    }
    if( l > r ){
         cout << "No\n" ; return ;
    }

    cout << "Yes\n" ;
    for( int i = 1 ; i <= n ; i ++ ){
        cout << b[ (((i-l+n)%n==0)?n:((i-l+n)%n))  ] << " " ;
    }
    cout << "\n" ;
}
int main(){
    ios::sync_with_stdio(false) ; cin.tie(0) ; cout.tie(0) ;
    ll tt = 1 ; //cin >> tt ;
    while( tt-- ) solve() ;
    return 0 ;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值