英伟达深度学习开发环境安装—来自大神的建议

这篇博客详细介绍了如何在Linux系统上搭建英伟达深度学习开发环境,包括英伟达驱动、CUDA工具、TensorRT和cuDNN的安装步骤。通过选择系统附加驱动进行英伟达驱动安装,然后通过网络安装CUDA,并设置系统变量。同时,安装TensorRT和cuDNN需要注册英伟达开发者账号并下载相应软件。这是一个为自动驾驶、神经网络和机器学习等应用准备的深度学习平台构建过程。
摘要由CSDN通过智能技术生成

英伟达深度学习开发环境安装

最近在跑地图 效果不好 经过咨询有了这个一个建议,特分享出来

  • 英伟达深度学习开发环境构建:
    • 英伟达Linux驱动安装
    • CUDA开发工具的安装
    • tensorRT安装
    • cuDNN安装

英伟达Linux系统驱动安装

  • 英伟达的Linux系统驱动安装

    • 系统附加驱动安装
    • 官方.run文件驱动安装
  • 本文安装方式:系统附加驱动安装:

    • 首先,打开桌面的软件搜索,选择附加驱动;
    • 选择,Ubuntu提供的制定私有NVIDIA系统驱动;
    • 安装,输入sudo密码,安装就好;
  • 这种方式是最简单的英伟达驱动安装方式,出错率最小;当然啦,想尝试官方的安装方式也是可以的,成功率不高,不是很推荐;

##  CUDA开发工具的安装

  • 安装方式
    • .run文件安装
    • 网络下载
  • 本文的安装方式:网络安装
  • 具体的安装方式:
    • 首先,访问英伟达的CUDA工具下载网址:
      • 网址:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值