回溯算法——全排列

该文章介绍了如何使用回溯算法解决全排列问题。通过维护一个`path`数组存储当前路径,一个`used`数组标记已使用的元素,当`path`数组长度等于原数组`nums`长度时找到一种排列。代码中定义了一个`Solution`类,包含`backtracking`函数进行递归搜索,并提供公共接口`permute`返回所有可能的排列。文章强调排列问题需从头开始搜索,并需记录已使用元素。
摘要由CSDN通过智能技术生成

回溯算法——全排列


问题

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

一、解决思路

回溯法

处理排列问题每次都要从头开始搜索,排列问题需要使用一个used数组来标记已经使用过的元素(在树枝上使用过),终止条件是当收集元素的数组path的长度和nums数组一样大时,说明找到了全排列

代码

class Solution {
private:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(vector<int>& nums, vector<bool>& used){
        if (path.size()==nums.size()){
            result.push_back(path);
            return;
        }
        for (int i = 0; i<nums.size(); i++){
            if (used[i]==true){
                continue;
            }
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            used[i] = false;
            path.pop_back();
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        int index = 0;
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

总结

排列问题与组合问题不同之处:
每层都是从0开始搜索,而不是从startIndex开始
需要used数组记录path存放的元素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值