机器学习
文章平均质量分 78
人工智能
yilyil
勿在浮沙筑高台
展开
-
tensorflow操作
数据比较python自带的list,list本身是链操作,面对图像处理的大数据,会显得吃力np.array是在深度学习之前发展起来的科学库,没有很好的GPU支持和自动求导tf.Tensor是一种包含更多功能,更偏用于神经网络的计算np 和 tf 拼接分裂random操作都是类似的,命名也是类似的维度scalar:1.1 维度0vector: [1.1] 维度1matrix:[[1.1,2.2],[3.3,4.4 ]] 维度2tensor:维度大于2tensorflow中tensor原创 2021-07-10 10:04:23 · 292 阅读 · 0 评论 -
图像基础,C++,python灰度图转换
一丶RGB和灰度图的转换介绍RGB图:一幅完整的RGB图是由红色、绿色、蓝色三个通道组成的。RBG调色器大家玩玩, 下面这张图来自知乎灰度图:这类图像通常显示为从最暗黑色到最亮的白色的灰度用不同的灰度色阶来表示" 红,绿,蓝"在图像中的比重,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度灰度图与RGB图像转换:任何颜色都有红、绿、蓝三原色组成,假如原...原创 2020-03-12 18:50:59 · 2112 阅读 · 0 评论 -
Dropout解决过拟合代码
学习自《深度学习入门》过拟合指的是只能拟合训练数据,但不能很好地拟合不包含在训练数据中的其他数据的状态。发生过拟合的原因,主要有以下两个。模型拥有大量参数、表现力强。训练数据少权值衰减是一直以来经常被使用的一种抑制过拟合的方法,。该方法可以简单地实现,在某种程度上能够抑制过拟合。但是,如果网络的模型变得很复杂,只用权值衰减就难以应对了。在这种情况下,我们经常会使用Dropout 方法...原创 2020-03-01 18:51:15 · 830 阅读 · 0 评论 -
pytorch visdom安装,开启,使用
安装conda activate ps pip install visdom激活ps的环境,在指定的ps环境中安装visdom开启python -m visdom.server浏览器输入红框内的网址使用1. 简单示例:一条线from visdom import Visdom# 创建一个实例viz=Visdom()# 创建一个直线,再把最新数据添加到直线上# y x二维两个轴,win 创建一个小窗口,不指定就默认为大窗口,opts其他信息比如名称viz.line([1,原创 2021-04-18 19:53:57 · 2792 阅读 · 3 评论 -
神经网络炼丹术:神经网络调参
更多优化算法受学习率影响很大,每个维度学习率一样,是全局设置,如果针对稀疏数据,很难学习,所以个性化每个维度设置AdaGrad :调整学习了率以往梯度的平方和做分母,所以前期分母小,前期学习率就大,加速训练,后期分母大小,学习率就小;且每个分类有不同的学习率假如前期学习率比较大,初始梯度爆炸,那么往后的学习率很小,训练提前结束,需要很多次很多迭代才行需要加上小的值 防止初始值为0...原创 2020-04-04 13:56:00 · 2065 阅读 · 2 评论 -
李宏毅:错误来自于什么地方——过拟合与欠拟合及其解决方案
要问你的error来自哪里,就像下面这张图f⌢\overset{\frown} {f}f⌢是理想的函数,f∗f^*f∗是你现在找到的函数bias 和 variance 就是你打偏的原因虽然样本均值不等于μ\muμ,但其期望等于μ\muμ样本会散落在μ\muμ附近,并且其偏离程度由σ2n\frac {\sigma^2}{n}{}nσ2决定,又因为σ\sigmaσ不变,那么n越大,散布就会越集中打个比方就如同这幅图,你打靶的时候瞄准的点与靶心是有bias的,并且子弹射出去,也会与瞄准的点有v原创 2021-07-08 16:38:50 · 260 阅读 · 0 评论 -
李宏毅:回归
输出一个标量接着上篇概述,我们来使用宝可梦进行回归的例子首先函数的样子就是,输入进化前的梦可宝的cp值,输出进化后的cp值之后我们规定线性方程范围,图中颜色深浅我们使用 loss=∑(正确cp值−函数估计cp值)2loss=\sum(正确cp值-函数估计cp值) ^{2}loss=∑(正确cp值−函数估计cp值)2 90图中颜色代表4.随机取初始值,计算偏微分,更新w,b参数,不断是loss最小( 图中颜色越好loss越大,越蓝loss越小 )如果损失函数的方程式这样的,那么能不能达原创 2021-07-08 16:38:06 · 205 阅读 · 0 评论 -
李宏毅:机器学习 介绍
总述:机器学习就是寻找函数1. 我们首先会想好找什么样的函数比如能够让语音转为文字的函数,一张图片转为类别的函数,能够生成图片的函数2. 在我们想好找什么函数之后,又怎么样告诉机器我们要找的函数是什么样子的呢?常见有监督学习,加强学习,无监督学习监督学习:我们会给机器一些带有标签的数据,也就是告诉机器我们理想中的函数是:在给定的输入下,函数输出是与标签对应的,比如一张图的标签是猫,那么图片输入经过函数,输出就是猫加强学习:比如AlphaGo与自己或者其他机器进行下棋,那么输赢回座位反馈来不原创 2021-07-08 16:36:34 · 259 阅读 · 0 评论 -
李宏毅:Word Embedding
1-of-N Encoding每个单词用一个vector代替,世界上有多少个word,vector有多少个维度这样的vector得不到任何的联系,比如bag和cat你无法知道都是动物解决:使用word class但是光用class是不够的,我们少了一些信息,class1和class2代表动物和动物可以做的动作,这一层也没有体现出来解决:Word Embedding,它每一个word project一个高维度的space上面(维度往往比1-of-N Encoding维度低),我们使得接近的词汇位置原创 2021-07-08 16:33:55 · 309 阅读 · 0 评论 -
李宏毅:GAN——Conditional Generation
Conditional Generation:你可以根据调整输入的vector得到你想要的图片,而不是由GAN随机生成Conditional GAN的输入 不只输入vector还要输入normal distribution z一起产生结果![在这里插入图片描述](https://img-blog.csdnimg.cn/2021042214 1505652.png)原来的discriminator只需要输入一张图片,但是也是有问题,因为discriminator只检查你现在输入的图片是不是高质量的,而完原创 2021-07-08 16:33:28 · 446 阅读 · 0 评论 -
李宏毅:GAN——Unsupervised Conditional Generation
回忆Generation:输入一个随机的输入,会输出一个随机的输出Conditional Generation:你可以根据你所输入得到你想要的输出,而不是由GAN随机生成,你可以通过控制输入来控制输出的结果supervised Conditional Generation:比如图片生成文字,我们database里面有很多{文字,图案}的pair来训练Unsupervised Conditional Generation:比如下面的将图片转换成另一个风格(因为这个想做pair做监督学习也很难)原创 2021-07-08 16:33:10 · 305 阅读 · 0 评论 -
李宏毅:Auto-encoder
什么是auto-encoder首先找一个encoder,作用好比输入一张图片丢入网络输出一个code(code是一个输入目标的压缩代表),同时还有一个decoder,输入一个coder,丢入该网络,生成一个图片,能够重建原来的图像这个技术可以采用auto encoder(可以给一张图片变成code),但是encoder不能自己训练,必须需要decoder(给一个code变成一张图片)这两个NN,不能单独训练,需要一起学与PCA有类似的思想输入一张图片PCA就是输入图片x (x 往往减去平原创 2021-07-08 16:32:52 · 671 阅读 · 0 评论 -
李宏毅:GAN——基本思想和算法流程
Generative Adversarial Network输入一个vector 可以生成你想要的,就是GAN输入的一个个vector变成了一张张照片如果第一个数代表头发的长度,倒数第二个个数代表头发蓝色的程度,最后一个代表是否张开嘴,那么数值变换就会有如下的变换GAN的基本IDEAGAN的神奇之处,不止训练上述的生成器(generator),还训练了一个分辨器(discriminator),它的输入是你想要生成的东西,输出是一个数值,数值越大输入图片就越真实...原创 2021-07-08 16:32:07 · 2106 阅读 · 0 评论 -
人尽皆知的马尔科夫链深入的意义
在许多生物,商业,化学等领域马尔科夫链经常被用作数学模型,该模型用同一种方法进行多次实验或者测量,每次测试结果都属于几个指定的结果之一,每次测试结果仅依赖于最接近的前一次测试应用一:人口迁移应用二:民主选举深入在接近 q = [0.3 0.6 0.1]T然后我们更加惊奇的发现学过特征值的应该知道这个P作用就跟常数一样得出结论每一个随机矩阵p都有一个稳态向量q使得pq=qpq=qpq=q从人口迁移的角度来说,q所带来的作用使得 迁到郊区人口=迁到城市人口...原创 2020-05-28 20:33:26 · 998 阅读 · 0 评论