1. 何为决策树桩?
单层决策树(decision stump),也称决策树桩,它是一种简单的决策树,通过给定的阈值进行分类。
从实际意义上来看,决策树桩根据一个属性的单个判断(但是实际上待判断的物体具有多个属性)就确定最终的分类结果。这种特性比较适合做集成学习中的弱学习器,因为其至少比随机的效果好一些,又计算较为容易。
2. 关键问题
根本目的:通过选择一个合适的决策树桩(弱学习器),使得物体类别识别准确率尽可能高。
怎么选择一个合适的决策树桩?
- 从所有属性中,选择那个属性作为决策树桩(弱学习器)
- 该决策树桩的阈值设定为何值(上图中是1.75)?
- 是小于阈值识别为1(yes),还是大于阈值识别为1(yes)。一般情况下设定为小于。