题意:给定一些人的打电话的记录,求里面中的团伙个数,以及领导人即打电话的时长最久的人物,要求团伙数目要大于两个人,且总的通话时长不低于一个阈值
思路:此题可以看出求一个图中有多少个连通分量,即每个连通分量中通话时长最大的那个节点,由于是字符串,最好是把字符串映射成一个整数,用map存储,且保存双向的,这样在存取的时候既能根据id求姓名,也能根据姓名求id,图用一个二维的vector数组保存,注意空间要开为2*n,因为n是总的通话记录,不是总的人数,在这里入坑无法自拔,求得的总的通话时长由于加了两遍,故要大于两倍的阈值
代码:
#include<iostream>
#include<vector>
#include<string>
#include<map>
using namespace std;
vector<vector<int>> p;
vector<int> q;
map<string, int> Stoi,gang;
map<int, string> ItoS;
bool vis[2010] = { false };
int n = 0, m = 0,index = 0,cnt = 0,sum = 0,head = 0;
int findId(string str) {
if (Stoi.count(str)!=0) {
return Stoi[str];
}
else {
Stoi[str] = index;//不存在执行此操作时自动插入该条记录
ItoS[index] = str;
return index++;
}
}
void DFS(int num) {
vis[num] = true;
if (q[head] < q[num]) {
head = num;
}
cnt++;
sum += q[num];
for (int i = 0; i < p[num].size(); i++) {
if (vis[p[num][i]] == false)DFS(p[num][i]);
}
}
int main() {
cin >> n >> m;
p.resize(2 * n);//n是打电话的记录,不是总的人数
q.resize(2 * n);
string str1 = "", str2 = "";
for (int i = 0,wei = 0;i < n; i++) {
cin >> str1 >> str2 >> wei;
int id1 = findId(str1);
int id2 = findId(str2);
p[id1].push_back(id2);
p[id2].push_back(id1);
q[id1] += wei;
q[id2] += wei;
}
for (int i = 0; i < n; i++) {
cnt = 0,sum = 0,head = i;//head从i开始,前面已经访问过了,不属于后面一个连通分量中
if (!vis[i]) {
DFS(i);
if (cnt > 2 && sum > m*2) {
gang[ItoS[head]] = cnt;
}
}
}
printf("%d\n",gang.size());
for (auto i = gang.begin(); i != gang.end(); i++) {
cout << i->first << " " << i->second << endl;
}
system("pause");
return 0;
}