题意: 给定一组数据、乘法符号的个数和加法符号的个数,把这些加法和乘法符号添加各个数之间,求构成得到的最大的数
思路:这题需要使用动态规划来实现。sum是保存的是前i个数的和,dp[i][j]保存的是i个数中j个*的总和。首先来推一下转移方程
dp[i][0]表示的是前i个数有0个*号得到的值,即前i个数的和,也就是sum[i],
dp[2][1] = dp[1][0]*num[2];
dp[3][1] = max(dp[1][0]*(sum[3]-sum[1]),dp[2][0]*(sum[3]-sum[1]));
dp[4][1] = max(dp[1][0]*(sum[4]-sum[1]),dp[2][0],*(sum[4]-sum[2]),dp[3][0]*(sum[4]-sum[3]));
可以得到:dp[i][j] = max(dp[i][j],dp[v][j-1]*(sum[i]-sum[v])), 对此式的理解:i个数中j个*的最大值等于:当前值与在v中插入j-1个*的较大值。v依次从1递归到N-1,
代码:
#include <iostream>
#include<algorithm>
using namespace std;
int sum[16];//sum保存的是前i个数的和
long long dp[16][16];//保存的是i个数中有j个*的和
int main(int argc, char** argv) {
int K,N,tem;//k是*的数量,N是总的数的数量
cin>>N>>K;
for(int i=1;i<=N;i++){//给所有的sum赋值
scanf("%d",&tem);
sum[i] = sum[i-1]+tem;
}
for(int i=1;i<=N;i++){//dp[i][0]表示的是i个数中0个*,所以都是+,即前i项和
dp[i][0] = sum[i];
}
for(int i=2;i<=N;i++){//表示的是数字的个数
for(int j=1;j<i&&j<=K;j++){//j表示的是k的个数
for(int v=1;v<N;v++){//v表示的是*的位置
dp[i][j] = max(dp[i][j],dp[v][j-1]*(sum[i]-sum[v]));
}
}
}
cout<<dp[N][K];
return 0;
}