大数据常用技术栈

本文介绍了大数据技术栈的主要组件,涵盖数据采集(Flume、Logstash、Sqoop、Kafka、Pulsar)、数据存储(HBase、Kudu、HDFS)、数据分析(Spark、Flink、MapReduce、Hive、Tez)、OLAP引擎(Druid、Kylin、Impala、Presto)、资源管理(Yarn、Kubernetes、Mesos)以及工作流调度(Oozie、Azkaban)。此外,还提及了Ambari和Zookeeper等辅助工具。
摘要由CSDN通过智能技术生成

提起大数据,不得不提由IBM提出的关于大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),而对于大数据领域的从业人员的日常工作也与这5V密切相关。大数据技术在过去的几十年中取得非常迅速的发展,尤以Hadoop和Spark最为突出,已构建起庞大的技术生态体系圈。

首先通过一张图来了解一下目前大数据领域常用的一些技术,当然大数据发展至今所涉及技术远不止这些。
​BigData Stack:
在这里插入图片描述
下面分不同层简单介绍一下各个技术,后续会单独详解其中的技术以及基于这些技术进行“封装”后在企业中已有实际应用的技术。当然各个层并不是字面意义上的严格划分,如Hive既提供数据处理功能也提供数据存储功能,但此处将其划为数据分析层中

1. 数据采集和传输层

  • Flume
    Flume一个分布式、可靠的、高可用的用于数据采集、聚合和传输的系统。常用于日志采集系统中,支持定制各类数据发送方用于收集数据、通过自定义拦截器对数据进行简单的预处理并传输到各种数据接收方如HDFS、HBase、Kafka中。之前由Cloudera开发,后纳入Apache
  • Logstash
    ELK工作栈的一员,也常用于数据采集,是开源的服务器端数据处理管道
  • Sqoop
    Sqoop主要通过一组命令进行数据导入导出的工具,底层引擎依赖于MapReduce,主要用于Hadoop(如HDFS、Hive、HBase)和RDBMS(如mysql、oracle)之间的数据导入导出
  • Kafka
    分布式消息系统。生产者(producer)——消费者(consumer)模型。提供了类似于JMS的特性,但设计上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值