目录
基本概念
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
用大白话解释:你沿着一条路走到一个死胡同,你就只能返回上一个岔口走另外一条路
回溯法一般步骤
- 针对所给问题,定义问题的解空间
- 确定易搜索的解空间结构
- 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
- 两个常用的剪枝函数:
- 1) 约束函数:在扩展结点中剪去不满足约束的子树
- 2) 限界函数:剪去得不到最优解的子树
力扣题
79. 单词搜索(回溯+DFS)
给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例:
board =
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]给定 word = "ABCCED", 返回 true
给定 word = "SEE", 返回 true
给定 word = "ABCB", 返回 false
提示:
board 和 word 中只包含大写和小写英文字母。
1 <= board.length <= 200
1 <= board[i].length <= 200
1 <= word.length <= 10^3
class Solution {
private int[][] DIRECTION=new int[][]{{0,1},{0,-1},{1,0},{-1,0}};//偏移量数组,是回溯算法中的一个技巧。它的顺序无关紧要
private boolean[][] mark;//标记数组,false表示这个点已经走过并且不通
private int m;
private int n;
private char[][] board;
private String word;
private boolean dfs(int i,int j,int start){
if(start==word.length()-1){
return board[i][j]==word.charAt(start);//终止的地方,寻找成功
}
if(board[i][j]==word.charAt(start)){
mark[i][j]=true;
for(int[] direction:DIRECTION){
int new_x=i+direction[0];
int new_y=j+direction[1];
if(new_x<0||new_y<0||new_x>=m||new_y>=n||mark[new_x][new_y]){//判断是否越界
continue;
}
if(dfs(new_x,new_y,start+1)){
return true;
}
}
mark[i][j]=false;
}
return false;//终止的地方,寻找失败
}
public boolean exist(char[][] board, String word) {
int len=word.length();
m=board.length;
if(m==0){
return false;
}
n=board[0].length;
this.board=board;
this.word=word;
mark=new boolean[m][n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(dfs(i,j,0)) return true;//对每一个网格元素进行深度优先搜索,若dfs函数返回true则存在程序结束
}
}
return false;//进行到这一步代表寻找失败
}
}