1.概念
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回到上一步还能执行的状态,尝试别的路径。
类似于走迷宫一样,假设我们到了每一个岔路口都规定,除了走过的地方,按照先往上走到底,如果不能走,在退回到上一个岔路口,走左边,如果不行再走右边,如果不行再走下面。每次退回就是每次的回溯,所以回溯法要保存每一次的状态。
还有排列组合问题,也是回溯法的思想,123和456随机组合,我们就可以使用递归,每当组合长度等于2就回溯到上一步看看能不能再组合别的。
回溯法也是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
2、基本思想
其实就是深度优先搜索的策略,从根结点出发深度探索。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。
就比如我要求123和456的随机组合,看下面这段java代码:
public static StringBuffer s = new StringBuffer();
public static StringBuffer str = new StringBuffer();
public static void zuhe(int[][] arr, int n) {
if (n==arr.length) {
s.append(str+"\n");//如果长度到达了组合长度,就加在总字符串里
return;
}
//继续遍历下一行的每一个值,每加入一个进str,然后进行下一行
for (int i = 0; i < arr[n].length; i++) {
str.append(String.valueOf(arr[n][i]));
zuhe(arr, n+1);
//上一次完成了,回溯到当前层,需要删掉最后面那个添加下一次循环到的值
str.deleteCharAt(str.length() - 1);
}
}
public static void main(String[] args) {
int[][] arr = new int[][] {
{1,2,3},{4,5,6}
};
zuhe(arr, 0);
System.out.println(s);
}
而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
3、用回溯法解题的一般步骤:
(1)针对所给问题,确定问题的解空间:
首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
(2)确定结点的扩展搜索规则
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索